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I. INTRODUCTION 

The world's attention to environmental pollution has grown by leaps 

and bounds during the past two decades. This trend is vividly reflected 

in the mushro(xn growth of texts, research reports, publications and 

conferences [l-ll], both in the U.S. and around the globe, on the 

environmental issues since 1963. The environmental movement was high­

lighted by the passage of the Clean Air Act of 1970 by the U.S. Congress. 

The resultant awareness and understanding of mankind's intact on our 

environment have led to a conclusion that in order to preserve the 

living quality on the earth, it is essential to control and redure 

further pollution and hence to secure a cleaner and safer environment. 

One of the suggestions to achieve such a goal, made by American 

Chemical Society's Committee on Environmental Improvement in 1978, was 

"continued improvement in the analytical chemical methods needed to 

monitor, control and study the environment"[l2]. The purpose of this 

research vdiich has been envisioned along the same philosophy is two-fold. 

One is to solve some problems encountered when diode lasers are used as 

a tool for gaseous air pollutants studies. The other is to develop a 

new analytical method for monitoring gaseous air pollutants by taking 

advantage of certain characteristics of diode laser, photoacoustic 

detection and wavelength modulation. A brief introduction on the air 

pollution, its effects on the environment and a survey of current methods 

in measuring and monitoring the air pollutants will be presented in this 

chapter. 
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A. Air Pollution and Its Effects on the Environment 

Air pollutants can occur in the forms of gases, solid particles, 

or liquid aerosols. Gaseous pollutants constitute about 90% of the 

total mass anitted to the atmosphere, while particulates and liquid 

aerosols make up the remaining 10% [8-13]. The study of gaseous 

pollutants will therefore lead us to a better understanding of the 

mechanism and subsequently the control of air pollution. 

Gaseous pollutants are evolved primarily from the combustion of 

fuels and waste materials. For example, the burning of high-sulfur 

fuel is responsible for sulfur dioxide emission, and motor vehicles 

account for most of the carbon monoxide and hydrocarbon emissions in the 

atmosphere. These pollutants and their potential adverse effects on the 

environment have been studied extensively by scientists. Their 

finding clearly demonstrated that atmospheric constituents, both near 

ground and throughout the rest of the troposphere and stratosphere, 

affect the life on the earth either directly or indirectly. 

Some pollutants, such as CO, HgS, NH^, SO^, NO, NO2, Og and 

mercaptans, are toxic. Others, like polycyclic aromatic hydrocarbons, 

aromatic amines, nitrosamines and vinyl chloride, are carcinogens or 

potential carcinogens [5]. In addition to the adverse effects on human 

beings, these pollutants may also cause deterioration of textiles, 

corrosion of metals and building materials and damage to vegetation 

[4 ,5 ,8 ,9 ] .  

Nitrogen oxides play important roles in the photochemistry of 

troposphere. Even as low as 0.5 ppm of nitrogen dioxide in the atmosphere 
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can trigger the formation of smog. The combination of particulates, 

smog and sulfur containing compounds in the air was thought to be 

responsible for air pollution episodes which caused thousands of deaths 

in London in 1952, and again hundreds of deaths in New York City in 

1966 [9], The presence of ammonia speeds up atmospheric sulfate 

production [14] and also combines with nitrate to form ultrafine parti­

cles, which not only cause acidification of precipitation but also 

reduce visibility. 

Besides these direct adverse effects, air pollution also shows 

possible long range effects on the climate. Chlorofluorocarbons, e.g. 

freons, deplete stratospheric ozone layer which protects living matter 

from excessive exposure to ultraviolet rays [15,16]. Increasing carbon 

dioxide concentration in the atmosphere, as produced by the extensive 

burning of fossil fuels during the past few decades, is raising the 

global temperature due to the "greenhouse effect"[3,8,l]. It has been 

pointed out that even a relatively small increase in average temperature 

could be detrimental to the well-being of the human race. The disruption 

of food production cycle and the melting of ice in the poles even to 

the point of flooding a large part of the world are two of the most 

ominous examples. 

To realize the effects of various pollutants on the environment 

is an important matter. However, it is also equally important to 

understand the connection between sources of air pollution and the 

location of a critical receptor of the pollutant. It involves the 

transport, transformation and dispersion of the pollutant through the 

atmosphere. A complete and thorough analysis of the transport and 
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diffusion of pollutants in a given region is necessary for the purpose 

of determining the cumulative concentrations at all points within the 

region as a function of time. Thus , accurate mathematical models can be 

established and be utilized for future predictions. Therefore, monitor­

ing methods are needed to provide spatial and temporal information. Two 

kinds of monitoring methods are currently being explored. One stresses 

the in situ measurement capability using movable instruments. The other 

relies on the remote sensing capability by measuring either the integrated 

concentration (e.g. long path laser absorption) or concentration profile 

which can then be integrated (e.g. various LIDAR applications) [l7]. 

B. Measurement and Monitoring of Gaseous Air Pollutants 

The optimal analytical technique to be employed in a particular 

monitoring exercise depends on the concentration range which is likely 

to be encountered and the time variation of the pollutant concentration. 

These factors are in turn largely dependent upon where the measurements 

are to be made. 

Concentrations in the vicinity of a polluting source depend greatly 

on the source strength and wind direction. Large short-term variations 

in concentration may be observed. At locations increasingly removed 

from the sources, the short-term variations become progressively less. 

When the concentrations are varying rapidly, real-time continuous 

measurements are desirable in order to obtain meaningful information 

on peak levels. However, for most measurements of a 'background' type, 

e.g. determination of the general pollutant level in a particular region. 
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time resolution of less than one hour is not normally necessary. 

In this section, analytical methods for the measuring and monitoring 

of gaseous air pollutants will be grouped into two categories: the 

existing methods and the laser monitoring methods, and will be discussed 

accordingly. 

1. Existing methods 

Existing analytical techniques for gaseous air pollutants analysis 

may be classified as chemical and physical methods [18]. 

Chemical methods utilize chemical properties of the species to be 

analyzed. These include colorimetric, acidimetric, electrochemical 

methods and so on. These methods generally have the disadvantage of a 

need of sample collection and preconcentration due to their low 

sensitivity. Sampling system and procedure have to be well designed 

in order to obtain quantitatively representative results and to avoid 

sampling errors. Besides, a sampling procedure can be time-consuming 

and hence makes continuous monitoring difficult. Therefore, these 

methods can only be employed to background type of measurements. 

On the other hand, physical methods involve direct measurements of 

physical or optical properties, either of pollutant itself or following 

its interaction with another compound. They include chemiluminescence, 

fluorescence, absorption spectroscopy, mass spectrometry and chromato­

graphic methods. Some of them may be combined to achieve a better result. 

Examples are GC/MS and GC/IR. In general, most of the physical methods 

can be employed to continuous monitoring and automated to satisfy many 

monitoring requirements. 
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In practice, chemiluminescence method has been widely used for the 

determination of ozone, nitrous oxide and sulfur containing compounds. 

Detection limit of sub-part-per-billion has been obtained [18]. Gas 

chromatography is by far the most widely used analytical technique for 

organic atmospheric pollutants. Unfortunately, it is usually not 

sensitive enough to measure ambient level pollutants without sample 

preconcentration, vAich will then introduce additional error and make 

continuous monitoring difficult. Infrared absorption spectrometry has 

historically been used to detect and to identify the constituents of 

air pollutants [19]. For example, it is officially recommended by 

National Institute for Occupational Safety and Health (NIOSH) for the 

carbon monoxide measurement in air [20]. Today, many commercially 

available gas analyzers for in-plant measurements are based on this 

principle and their sensitivities can be 0.02 ppm for some gases with 

20-meter pathlength [2l]. 

These automated, physical methods are generally precise and accurate. 

However, they are limited to single-point measurement and are usually 

reasonably reliable to about 0.01 ppm only. For the study of behavior 

and status of trace gases in the natural atmosphere at ppb level and 

below, this sensitivity is far from satisfactory. The need for these 

trace gas measurements has stimulated research further into more 

sensitive analytical techniques. Also, techniques for rapid, non-

interfering source monitoring, pollutant transportation monitoring, 

spatial resolution monitoring, of ambient pollutant concentration need 

to be developed. For the routine monitoring of the atmosphere, techniques 

with adequate sensitivity, simple operation and reasonable cost have to 
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be available. 

2. Laser monitoring techniques 

Due to their simplicity, high sensitivity, speed of measurement, 

less interfering, higher specificity and selectivity, and potential of 

mutipollutant detection, the spectroscopic methods have allured scientists 

for their applicaticms in pollutant monitoring since 1970 [22,23]. 

With the fast development of lasers, spectroscopic methods based on 

lasers for air pollution analysis have been exploited quite extensively 

during the past few years, and they appeared to be highly promising in 

various areas of application mentioned above [24-27]. Especially for the 

routine monitoring, it is increasingly evident that laser monitoring 

techniques may be the only answer. 

The laser as a source offers four unique features unavailable in 

conventional incandescent light sources: high power, coherence, spectral 

purity and spatial collimation. Most laser monitoring techniques 

utilize all of these properties in their measurements. Because of the 

high spectral purity, and hence high resolution, these techniques 

generally offer greater flexibility of operation and can monitor a 

wider variety of pollutants. The high power, collimation and coherence 

have made remote sensing and long path monitoring feasible. Even though 

remote sensing has attracted inordinate attention, it should not be 

generally considered a substitute for point sampling, but only an adjunct 

to it. The use of lasers for point monitoring and refinements in cor­

relation and Fourier transform spectroscopy can be equally important. 

Nevertheless, in some cases, remote sensing represents the only economical 
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or technically feasible technique. 

The most promising laser monitoring techniques for gaseous air 

pollutants under development today are based on the principles of Raman 

scattering, resonance fluorescence and resonance absorption [26-28]. 

In Raman scattering, the wavelength of a backscattered radiation 

is shifted by an amount which is characteristic of the vibrational 

frequencies of the pollutants. Figure 1 shows the frequency shifts 

of the rotatlonal-vibrational Raman spectra of typical trace molecules 

present in the atmosphere as well as the major atmospheric constituents, 

with respect to the transmitted laser frequency [29]. The estimation 

of the absolute concentration of each species can then be performed by 

comparing the Raman backscattered intensity with that of the Raman line 

from molecules which occupy the same volume [30-32]. Therefore, it 

can be used to monitor a variety of gases using a single, fixed frequency 

laser and has the ability to measure the actual number of pollutant 

molecules in a Sfunple volume. It also shows a high potential as a remote 

sensing method. Unfortunately, it has the disadvantage that it requires 

a high power laser to achieve low detection limits because of the small 

Raman-scattering cross section. So this method will probably be limited 

to major atmospheric constituents and source monitoring. Besides, with 

a high power laser, eye safety becomes an important factor which further 

limits the use of this technique. 

The resonance fluorescence process has typically higher cross 

sections than Raman scattering. However, its intensity suffers from 

quenching in the lower atmosphere because of the collosions with air 

molecules when used as a remote sensing technique. The sensitivity is 
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Figure 1. Frequency shifts of Q-branch of vibrational-rotational 
Raman spectra of typical molecules present in ordinary 
and polluted atmosphere relative to the exciting laser 
frequency. 
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thus usually too low for ambient air level, and is only suitable for 

source monitoring. Nevertheless, resonance fluorescence has a clear 

advantage in the remote monitoring of the upper atmosphere where the pres­

sure is low and for point-sampling with a low pressure in gas cell. A 

point sampling system measuring nitrogen dioxide based on resonance 

fluorescence has been developed by Gelbwachs et al. [33] and Birnbaum and 

Tucker [34]. It can provide real-time, automatic monitoring of ambient 

atmospheric NO^ levels. Detection limit of 1 ppb can be readily obtained. 

Okabe, et al. [35] have used a system with similar functional components to 

measure SO^ fluorescence and obtained a detection range from 0.1-1600 ppm. 

The method based on resonance absorption is the most sensitive one 

because absorption cross sections are the largest of the optical inter­

action and are not affected by quenching. Since most of the atmospheric 

pollutant gases have strong characteristic absorption lines in the so-

called 'fingerprint' region (2-20 iim) of the infrared, the infrared 

lasers have thus attracted great attention for their uses in laser 

monitoring techniques. 

There are four basic monitoring techniques for pollutant gases 

based on infrared absorption method. They are reduced-pressure point 

sampling for high specificity [36], in situ ambient air and source 

monitoring [37], single-ended remote monitoring [38] and long-path 

bistatic monitoring [23]. Each of these has its particular usefulness 

and makes specific demands on the laser. 

Single-ended remote monitoring usually requires much higher power 

than other techniques. This high power can so far only be obtained from 

molecular gas lasers ^ich can be tuned to different discrete emission 
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lines, such as CO^ and CO lasers, or frc»n those which can emit a line 

spectrum such as HF and DF lasers. However, they suffer from the fact 

that the detection of gases is limited almost entirely to accidental 

(usually partial) coincidence between their emission wavelengths and 

the spectral absorption lines of the gases to be analyzed [28,39,40]. 

On the other hand, the power requirement for other techniques can be 

met by different types of continuously tunable lasers, which offer the 

advantage of being able to scan through spectral absorption lines of 

molecular species. As a result, they will enable us to utilize their 

relatively large absorption cross sections to the fullest extent possible 

and at the same time to select wavelength regions with minimum potential 

interferences [41,42]. 

Some important tunable infrared lasers available at the present 

time are listed in Table 1, along with their power, wavelength coverage 

and highest resolution obtainable. Pulsed optical parametric oscil­

lators (OPO) showed promise for remote space-resolved monitoring using 

topographic backscattering due to their high power [43]. However, 

this type of laser device does not offer a very narrow linewidth. The 

-3 -1 _ -, 
best obtained was only in the order of 10 cm [44J, which is not 

narrow enough for high resolution study of line parameters such as line 

position, linewidth, etc. 

High pressure gas lasers (HPG lasers) have great potential in 

differential absorption systems using natural reflectors, but efforts 

remain in making them into practical devices [45]. Spin-flip Raman 

lasers (SFR lasers) have been applied to balloon-borne in situ measure­

ment of NO to a height of 28 km in the stratosphere by Patel, et al. [46]. 
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Table 1. Properties of tunable infrared lasers [47-49] 

Tunable Source Wavelength Region Highest Resolution Typical Power 

con- obtained (cm 
overall tinuous cw 

(urn) (cm 

pulsed 

OPO 

Diode laser 

SFR laser 

HPG laser 

Color-center 
Laser 

0.55-3.5 

(LiNbOg) 

1.2-8.5 

(AggASSg) 

8-12 (CdSe) 

1-34 

3 (HF-
pumped) 

5-6 (CO 
pumped) 

9-14 (CO^ 
pumped) 

9-11 (COg) 

0.88-3.3 

3000 

15 

50 

100 

10 

500 

1 X 10 
-3 

3 X 10 

1 X 10 
"6 

3 X 10 

3 X 10 

10 

-5 

10 
-2 

10 
-3 

10 -2 

10" 

10 

10" 

10" 
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These lasers have higher power than diode lasers but their complex 

operation lowers their attraction and limits their uses in laboratory 

at the present time. Color-center lasers offer narrow line width 

(10 ̂  cm and have higher power than diode lasers [47]. However, their 

output wavelength does not cover the 'atmospheric window' region and 

therefore they have only limited uses in the study of air pollution. 

Tunable diode lasers have already been used for point monitoring, in situ 

source monitoring and long-path ambient air monitoring [25,48]. Because 

of their low-power, a retro-reflector is required in long-path monitoring. 

The small size, simple operation and low cost of such diodes have made 

them the most practical and desirable lasers for air pollution studies. 

In addition, their extremely narrow line width (10 cm ) have been 

used for accurate line parameter study of pollutant gases [49], which is 

the basis for the determination of their concentrations. 

In this research work, the diode lasers are chosen, for the above-

mentioned advantages, to study the possible improvement of the monitor­

ing techniques for gaseous air pollutants. The diode lasers will be 

used first to demonstrate the accuracy of an internal calibration method 

for line positions and, at the same time how this method can be used to 

study other line parameters and pressure broadening coefficients. 

Secondly, the diode lasers will also be used in photoacoustic detection 

in which the wavelength modulation technique will be employed to 

improve the signal-to-noise ratio. The technical details as well as 

their potential uses in the analysis and monitoring of gaseous air 

pollutants, of these two schemes will be discussed in later chapters. 
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II. LITERATURE REVIEW 

Since the first laser beam radiated from a ruby laser in 1960, a 

variety of lasers have been developed. Lasers with wavelengths extend­

ing from the infrared through the visible, to the ultraviolet region 

found widespread use in both industrial applications and academic 

research. Powerful, collimated, coherent, and monochromatic light emitted 

from lasers opened a new era for the spectroscopists and revolutionized 

the research on spectroscopy. Interactions with optical cross section 

considered too small by using conventional light sources, can now be 

observed due to the high power of the laser [50]. High resolution is 

obtainable because of the inherent high spectral purity of the laser. 

The best resolution attainable in the infrared region from the grating 

monochromator is about 0.07 cm ^ [5l], but with infrared lasers 0.001 

cm ^ can be easily achieved [52]. The extremely short pulse available 

from lasers enables one to study very rapid transition of the atoms and 

molecules. 

Among the many types of lasers, the tunable diode laser is chosen and 

used in this research work. Therefore, I elect to review the literature 

only related to this type of laser in this chapter. The operational 

principle and characteristics of the diode lasers will be discussed 

first followed by the discussion of their drawbacks. The application 

of diode lasers to high resolution spectroscopy and to line parameter 

study of gaseous air pollutants has been very successful. It will be 

reviewed along with its existing calibration problem. The analytical 

techniques for monitoring atmospheric constituents and pollutant gases 
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by the use of diode laser spectroscopy will then be reviewed in the 

last section of this chapter. 

A. Operational Principle and Characteristics of Tunable Diode Lasers 

Tunable diode lasers, also called semiconductor diode lasers, are 

made of semiconductor diodes. They include some binary compounds such 

as InSb, inAs, GaSb, PbSe, PbS, PbTe, and pseudobinary alloys such as 

Vl-x' 

Among them, the lead-salt diode lasers are the most useful in infrared 

spectroscopy and air pollution study. Detailed discussions on their 

operational principles and characteristics can be found in recent review 

articles [53-56]. Only the basics will be discussed here and special 

emphasis will be placed on their optical properties. 

The diagram of a typical lead-salt semiconductor diode laser is 

shown in Figure 2 [57]. If current is applied across the p-n junction 

of the diode, electrons from the n-type material, and holes from the 

p-type material are simultaneously injected into the junction region 

and the electron-hole recombination occurs. This recombination process 

emits photons with a wavelength corresponding approximately to the semi­

conductor energy bandgap. Since the active region is contained in the 

polished end faces of the semiconductor crystal, which serves as an 

optical resonator, laser action thus can occur. The laser emission 

occurs at a wavelength determined approximately by the Fabry-Perot 

equationt 

mA. = 2 nl 
m 
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Figure 2. Diagram of a typical lead-salt semiconductor diode 
laser. The dashed line shows the position of the 
p-n junction; the radiation is emitted from an 
area 40 x 250 ̂ m [57]. 
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where n is the refractive index, 1 the cavity length and m the number 

of half-waves within the crystal cavity. At a certain applied current 

the laser radiation contains several longitudinal modes. Figure 3 

shows the emission power-spectrum from a typical lead-salt diode 

laser [54], as recorded by a grating spectrometer having a resolution 

of about 0.1 cm The laser linewidth is narrower than 3 x 10 ̂  cm~^. 

As shown in Figure 3, the diode laser is emitting radiation in five modes 

""1 
approximately 1.5 cm apart under the specified operation conditions. 

The amount of separation agrees with the calculation based on a cavity 

length of 0.4 mm and an effective refractive index of about 6 [58]. 

The operation temperatures of the diode lasers are typically a few 

decades degrees Kelvin. Therefore» it is necessary to employ liquid 

helium as coolant or use a helium refrigerator to cool down the laser. 

The linewidth of this laser emission is extremely narrow. Hinkley and 

Freed [59] reported its Lorentzian linewidth as narrow as 54 KHz (1.8 x 

10 cm ) by heterodyning a Pb^ ggSn^ ^^Je laser, operating cw at 

10.6 |im, with a stabilized single frequency CO^ gas laser. The line-

width was found to vary inversely with power. Typical output power of 

a diode laser is less than 1 mw in cw. Efforts have been made to 

improve the power level, and will be discussed later in this chapter. 

A property of diode lasers that is different from other types of lasers 

is their exceptionally large (« f/1) beam divergence, which is due to 

the diffraction effects caused by the small gain region. Therefore, 

focusing optics are required for the use of diode lasers. 

Frequency tuning of the diode laser is achieved by change of 

chemical composition, temperature, pressure, injection current and 
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Figure 3. Emission power spectrum from a PbSg diode 
laser at a constant current of^SSO mA. Tfie laser 
linewidth is less than 3 x 10 cm ; the spectrom­
eter resolution is approximately 0.1 cm"! [54]. 
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magnetic field. The chemical composition of these semiconductor diodes 

can be adjusted to control their bandgaps, and hence the spontaneous 

emission frequency of diode lasers. The spontaneous emission frequency 

(Vg) is approximately a linear function of the alloy composition factor 

x; 

Vg W VQ + &C 

where and 6 are composition parameters. Therefore, the laser 

frequency can be coarsely tuned by adjusting the composition factor x. 

Finer tuning can be done by changing the temperature [60], applied 

pressure [61] or magnetic field [62] which affect the refractive index 

and/or the energy bandgap. However, continuous fine tuning by directly 

changing the temperature of the overall semiconductor crystal during a 

scan is not practical. Instead, it is much easier to change temperature 

by current tuning [63]. The heat dissipation (I^) caused by the injection 

current raises the temperature in the junction region of the semiconductor. 

This not only increases the energy gap and hence the emitted photon 

frequency, but also changes the effective cavity length through the 

change of the refractive index. 

If during tuning, the spontaneous emission wavelength closely 

follows that of the laser emission, then continuous laser tuning over 

the entire range of spontaneous tuning can be achieved. But for the 

usual tuning mechanism as mentioned above, the laser frequency does not 

follow the spontaneous emission; thus, the continuous tuning range up to 

a few on"^ wide is usually separated by discontinuous jumps. Typical 

current tuning rates are 1-30 cm /A, with continuous tuning range of 
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-1 
1-3 cm in a single mode. An example of current tuning curve is shown 

in Figure 4 [54]. Continuous tuning range with current tuning is 

usually wider than that of magnetic tuning which is typically only from 

0.1 cm to 0.4 cm . Since the wider continuous coverage is very 

important to spectroscopic work, the current tuning has been 

used almost exclusively for this purpose. Pressure tuning can be used 

for discrete tuning. It provides a wider tuning range and does not 

sacrifice the high resolution capability of the lasers [64]. Combina­

tion of pressure tuning and current tuning enables one to use only a few 

laser crystals to cover the whole mid-IR region. However, extreme 

caution must be taken to prevent the laser crystals from crushing under 

the pressure. One thing noteworthy is that all these tuning rates are 

nonlinear [54]. Therefore their calibration has to be done carefully 

before the quantitative spectroscopy can be performed. 

B. Limitations and Recent Advances on the Diode Laser Technology 

In the past, wider application of the diode lasers had been limited 

by the relatively small cw output power (typically less than 1 mW) and 

the need of operating at cryogenic temperature (usually < 77 K). The 

former limits the use of diode lasers in photoacoustic detection, satu­

ration spectroscopy and as a local oscillator for heterodyne detection. 

The latter not only has limited the total tuning range of the diode 

laser, but also has actually posed economic problems for practical 

applications. In addition, the requirement of using a monochromator to 

eliminate the unwanted modes cuts off a significant portion of the 
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Figure 4. Current-tuning curve for a Pb^ 3gSn_ _Te 
diode laser operating cw in a Iiquid-
helium-cooled dewar. The tuning is continuous 
within each of the five modes. The data points 
indicate peaks in transmission of the laser 
radiation through a Ge étalon having a free 
spectral range of 1.955 GHz used for relative 
frequency calibration [54]. 
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already weak output power in a multimode beam. However, single mode 

laser emission is most desired for certain applications. Also desired 

are wider total tuning range so that only a few diodes are needed to 

cover the whole mid-infrared region, and wider continuous tuning 

range so that the high resolution spectroscopy can benefit most from it. 

Recent researches on the diode laser technology have made significant 

progress in both increasing the power level and achieving cw operation 

at higher temperatures. Along with this progress is the improved beam 

pattern and wider tuning range. 

The optical quality of end mirror is one of the major factors 

which limits the output power of the lasers [65]. It is inçroved by 

polishing rather than cleaving to form reflecting end faces of the 

laser cavity. For some Pb^^Sn^Te crystals an order of magnitude higher 

laser output has been obtained with polished end faces. The use of 

reflective coatings on the back mirror further improves the diode 

performance. 

A typical diode laser with its p-n junction extending across the 

entire width of the crystal, as shown in Figure 2, often operates in 

parasitic bounce modes due to the high refractive index of the crystal 

materials. This results in poor beam patterns and low efficiency. 

These bounce modes can be avoided by stripe geometry [60,66]. A diode 

laser with stripe geometry has a p-n junction confined in a region of 

20-100 |im wide and 500 pjn long with SiO^ or MgF2 on both sides of the 

active region. SiO^ and MgF2 have a lower refractive index than that 

of the diode material, and thus suppressed the bounce modes. With this 

geometry, the diode has been observed to essentially operate in a single 
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fundamental spatial transverse mode. The combination of stripe geometry 

and polished end mirrors on the fabrication of a FbS laser has made it 

possible to operate at 4.2 K with a cw output power as high as 370 rsU with 

more than 50 mW in a single mode [67], This represents the highest 

power ever observed from lead-salt diode lasers so far. 

Stripe geometry diode lasers with heterostructure have been observed 

to operate at higher tenqperature (above 77 K in cw) and thus increase 

the total tuning range of the laser. The first single heterostructure 

(SH) Pb^^Sn^Te diode laser was reported in 1973 with cw operation up to 

approximately 65 K [68]. Recently, laser emission of PbSj^_^Se^ SH diode 

at 130 K with mw single-ended output power in cw mode and an average 

tuning range of about 300 cm ^ have been reported [69]. Pb^ ̂ Sn^Se 

SH laser operating at 95 K with 3.9 mw output power and 300 cm ̂  tuning 

range has been achieved [69]. 

Double heterostructure (DH) further improves the operation temper­

ature of diode lasers in cw [70-73]. Groves et al. [72] fabricated a 

Pbg ggSnQ ^gfe-PbTe stripe geometry DH laser by liquid phase epitaxy. 

This laser was reported to operate from 10.5 |im at 12 K to 8.2 pm at 80 

K, with cw power of several mw. This is a total tuning range of nearly 

-1 
280 cm , about a factor of 10 over conventional homojunction Pb^ ^SnTe 

lasers. Another such laser diode grown by molecular-beam epitaxy [7 ] 

has performed laser emission up to 114 K in cw with even wider tuning 

range extending from 15.9 to 8.54 (540 cm ^). The total 

output power was only at the 100 |iW level. However, it was predicted 

that tens of mW can be achieved with a modified package design and 

improved mounting techniques. By hot-wall molecular-beam epitaxial 
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method, Preier et al. [73] have fabricated PbS-PbSe DH laser with cw 

operation of several hundred (im up to 120 K with tuning range of 360 

cm . Pulsed operation at 5.5 ̂ m has been achieved at temperature up 

to 230 K [74] .  

Frequency selectivity can be improved by fabricating a grating in the 

surface of the active region using photoresist and etching techniques. 

Such lasers, called distributed feedback (DFB) lasers, will operate in 

a single mode for a large variation in diode current and heat-sink 

temperature. DFB lasers made from Pb, Sn Te diodes with double hetero-
1-x X 

structure stripe geometry have been reported to offer extraordinary wide 

continuous tuning range and to be able to operate at both pulsed and 

cw modes at temperature up to 50 K with continuous current tuning of mode 

frequency up to 7 cm ^ [75]. 

However, these devices can only be tuned in this narrow range. No 

wide range coarse tuning is possible. If a certain tuning range has to 

be adjusted, very high precision in choosing the proper grating spacing 

and composition of the active region has to be fulfilled. Today, only 

laboratory samples exist. Only time will tell whether these devices can 

be fully developed to be put into practical uses. 

Recently, Walpole et al. [75], Lo [76, 77] and Partin and Lo [78] 

have been trying to make some homostructure diode lasers with compatible 

performances as thosr of heterostructure. The idea was to fabricate lasers 

from single crystals having a graded charge carrier concentration. Since 

a gradient in carrier concentration produces a gradient in the index of 

refraction, the photon s t^rnerated in the active region tend to be confined 

there. This improved photon confinement should result in a reduction in 



www.manaraa.com

25 

absorption coefficient and hence lead to higher temperature operation. 

The photon confinement in these devices is not as good as in DH laser, but 

it does have another advantage of being more stable to thermal cycling [79]. 

Homostructure Pb^ ̂ Sn^Te diode lasers have been reported to lase single-

mode with single-ended output power up to 0.9 mW and a cw tuning range 

of 216 cm over a temperature range from 11 K to 61 K [76]. The same 

group of scientists also fabricated homostructure PbS^_^Se^ diodes 

operating up to 90 K in cw modes with tuning range of 350 cm ̂  [77] and 

PbTe diodes operating up to 85 K in cw modes with tuning range of 280 cm ^ 

and cw output power of 3.5 mW [78]. After comparing these homosturucture 

and heterostructure lasers, Lo et al. [76] concluded that, by using a 

simple diffusion process, one can make a homostructure laser that is 

capable of operating at high temperatures just like most heterostructure 

lasers reported so far. 

Another iiqportant factor affecting the practical uses of diode 

lasers is their long term stability, which is excellent if they are 

kept at low temperature. Stability problems occur because of temperature 

cycling and interdiffusion effects at room temperature. Interdiffusion 

can be avoided if no direct contact of the lead salts with In, the main 

diffusant, exists. Cycling stability over more than 100 temperature 

cycles has been obtained recently by replacing MgFg or SiOg by anodic 

oxides as masking materials of stripe geometry and by choosing packages 

which maintain constant heat transfer properties [56], 
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C. Calibration of Diode Laser Frequency 

Tunable diode lasers have been successfully applied to high 

resolution spectroscopy and to pollution monitoring. The characteristic 

of these lasers makes them ideally suited for such applications is their 

very narrow linewidths (10 cm ). Naturally, to take advantage of the 

monochromaticity, reliable means of spectral calibration must be 

available. This is particularly important since the various methods of 

tuning for these lasers all result in nonlinear tuning rates. To 

complicate matters, the diode junctions usually go through unpredictable 

and irreversible changes each time they are cycled through the operating 

(cryogenic) temperatures. This makes it necessary to perform spectral 

calibration each time they are used, even if the operating temperature 

is identical. 

The calibration scheme consists of two parts. One is the establish­

ment of absolute frequency standards. The other is the calibration of 

the laser tuning rate relative to these standards. 

The simplest procedure to calibrate the absolute absorption line 

positions is to use a monochromator or interferometer to measure the 

laser frequency. This is quite straightforward for the diode lasers 

because the monochromator is used to select the desired mode and is part 

of the experimental setup. However, this device can provide an accuracy 

-1 
of only about + 0.01 cm at best. It is not sufficient for high 

resolution analysis. 

A better procedure is to calibrate against a simple gaseous mole­

cule contained in an absorption cell at low pressure, provided that (a) 
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its absorption lines have been well-studied to the necessary accuracy 

and (b) they are close enough to each other (<0.5 cm The latter 

ensures that at least one standard line will be seen in the continuous 

tuning range. Cole [so] has compiled for lUPAC the line positions of 

some simple molecules to be used as calibration standards with an 

-3 -4 -1 -1 
absolute accuracy of 5 x 10 to 10 cm over the region 1-4350 cm . 

However, this compilation was intended for the calibration of grating 

spectrometers. The accuracy of these line positions is not comparable 

with the resolution of diode lasers. And the lines are often not closely 

spaced as desired for laser spectroscopy. McClatchey et al. [Sl] and 

Rothméui et al. [82] compiled line parameters of H^O, CO^, CO, NgO, CH^, 

0^, Og, NHg, SOg, NO and NO^ for atmospheric absorption. Some of these 

data are known with high accuracy and can be used as calibration 

standards. 

Recently, Knoll et al. [83] have used the best available molecular 

constants to calculate transition frequencies in the bands of COg 

(622 to 717 cm and HCN (564 to 858 cm ^). They then measured HON 

p(15) relative to the adjacent CO^ Q(14) and Q(16) lines using an étalon 

for tuning rate calibration and found an agreement to within 0.0008 cm . 

This is still not sufficient for ultra-high resolution purpose. 

Therefore, new measurements are needed to reap the full benefit of the 

available spectral resolution capability. 

Lately, C^H^ has been suggested as a calibration gas near 10.5 um 

cind OCS for 5.8, 9.5 and 11.6 um [84-87]. Part of the Vy band of CgH^ 

has been recorded, and frequency splittings between individual transitions 

are reproducible to ± 0.008 cm ^ or better [84]. However, due to lack 
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of appropriate techniques for precise absolute frequency calibration, 

no absolute frequency was reported. On the other hand, some OCS 

lines near 9,5 ̂ m.have been measured to an estimated accuracy of ± 2 MHz 

by heterodyne technique [86]. Molecular constants were determined 

from experimental data. Wavenumbers, frequencies, and intensities of 

— 1 "1 
spectral lines of this band from 1025 cm to 1074 cm then were 

calculated and tabulated with uncertainty of + 2 MHz for immediate use 

as reference standards. The 11.6 and 5.8 ̂ m bands were studied similarly 

[87]. Line parameters in 815-892 cm ^ and 1662-1738 cm ^ regions were 

also tabulated. 

The absolute frequency can also be calibrated against some gas 

laser frequencies that are known accurately. These lines can be 

introduced into the spectrum by inserting a high-voltage gain cell into 

the laser be«un. The best known laser frequencies are those measured 

by frequency-mixing techniques, relative to the cesium-beam primary 

-1 
frequency standard. Lines in CO^ laser band from 903-1099 cm have 

been measured to + 25 KHz or 8.3 x 10 ̂  cm ̂  [88]. Methane-stabilized 

laser lines at 3.39 p,m have been calibrated to within 43 KHz or 1.4 x 

~ 6 ~ 1 
10 cm and CO^-stabilized laser lines at 10.17 ^m to within 16 KHz 

-7 -1 r- -1 
or 5.5 X 10 cm [89J. In the regions where these lines are available, 

they provide very accurate calibration standards. 

Other laser frequencies calibrated against these best-known laser 

frequencies have 'oncertainties of a few MHz, CO2 isotope laser lines 

have been measured to an accuracy of better than 10 cm by comparing with 

a reference laser [90,91], CO laser lines have been measured with 
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an uncertainty of about + 5 MHz, or 1.5 x 10 ̂  cm ^ [92]. They should 

be useful in the 5-7 ̂ m region as secondary frequency standards. 

In addition to the absolute frequency standards, the tuning rate 

relative to these standards has to be calibrated in order to measure the 

positions of the absorption lines of interest. There are many ways to 

do this. The most convenient and widely used approach is to use a 

reference Fabry-Perot interferometer [93,94], i.e., an étalon to produce 

relative frequency marker. Both solid germanium étalons and air-spaced 

étalons have been used for this purpose. When a solid étalon is used, 

the temperature must be stabilized to avoid changes in pathlength. 

Air-spaced étalon is much more stable against the temperature variation 

[93], However, air-spaced étalon requires a much longer physical 

length to achieve a reasonably small free spectral range because of its 

low index of refraction. Because small changes in the angle of incidence 

of the laser beam on the étalon can affect the fringe spacing and thus 

cause calibration error, air-spaced étalon is therefore more susceptible 

to this type of error. A two-beam system which allows the simultaneous 

measurement of a gas spectrum and the étalon trace is desirable because 

the diode laser sometimes drifts in temperature, and consequently 

wavenumber, between one spectral scan and the next. Nevertheless, if 

the étalon is placed after the monochromator, the motion of the image 

of the diode laser at exit slit changes the angle of incidence onto the 

étalon, thus causes the error mentioned earlier [95]. To solve this 

problem, Chraplyvy [96] designed a dual-beam, single-detector system 

with the étalon located before the monochromator. But this design 

resulted in a 75% power loss at the detector. Jennings [94] constructed 
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a system which has the advantage of the Chaplyvy's design but with less 

power loss. Besides, the étalon must be calibrated against some other 

reference since a measurement of the physical thickness is insufficient 

in accuracy. Reddy et al. [93] have calibrated an air-spaced étalon 

with Vg lines of HCN. The relatively low output powers of the diode 

lasers prevent the use of highly reflective coatings on the étalons, 

and the finesse is generally poor. One can not expect an accuracy of 

-3 -1 
better than 10 cm for this calibration scheme. 

A second approach is to make use of two or more known spectral 

lines of other molecules to establish a wavelength scale [83]. These 

spectral lines, if present in sufficient numbers and evenly distributed 

over the tuning range of the laser, serve as markers. But this is 

possible only near well-studied molecular bands, such as those of 

CO, CO^, and NgO* The most accurate variation is to perform heterodyne 

measurements in conjunction with an infrared molecular laser [87,97,98]. 

In this technique, spectrum analyzer is used to measure the beat 

frequency between the tunable laser and a gas laser with well-studied line 

~X 
positions such as a CO^ or a CO laser. Accuracy as high as 10 cm has 

« 

been achieved. However, its applications have in the past been seriously 

limited by the requirement that the absorption lines usually have to be 

-1 
adjacent to a molecular laser line to + 0.1 cm . In the 10 ̂ m region, 

CO^ laser has been employed to the heterodyne technique. Lately, line 

position measurements within + 6.5 GHz, near each CO^ laser line, have 

been reported [97]. The use of HgCdTe varactor photodiode in the 

detection of beats up to 61 GHz has been developed with two CO^ lasers 

[99]. This method has been applied to detect beats between a CO^ laser 
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and a diode laser [98] and difference frequency up to 17 GHz has been 

observed. Also, a 54 GHz beat-note has been detected in an InSb hot-

carrier diode mixer [lOO], It is believed that these recent advances 

will significantly increase the applications of heterodyne technique. 

The third approach is to rely on known molecular profiles to 

determine the tuning rate of the laser. Blum et al. [lOl] and Mill et al. 

[102] calibrated the tuning rate by measuring the magnetic field increment 

required to tune individual laser modes through the known Doppler 

widths of absorption lines of low-pressure gases. To apply this 

calibration method, care must be taken to insure that pressure broadening 

is negligible, that there is no fine structure of the absorption line 

which can add to its width, and that the absorption at line center can 

be accurately determined. The prior attempts [l01,l02] depended on 

the two-point calibration of the Doppler width of the absorption line 

and the assumption of a constant tuning rate over the region of interest. 

The uncertainty in the location of the half-maximum point on a sloping 

baseline plus experimental errors due to a typically noisy signal 

severely limit the accuracy. The calibration method to be developed 

in this research work is based on a much more sophisticated version 

of the third approach. It involves the fitting of the entire 

absorption line to a Voigt profile using the least-squares criterion. 

Reliability can be significantly increased as will be shown later. 
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D. The Use of Diode Lasers in the Monitoring of Gaseous Air Pollutants 

The use of diode lasers in monitoring gaseous air pollutants includes 

the line-parameter study, which has shown to be important for the 

monitoring schemes [l03], and also the analysis of pollutants. 

As a basis for later atmospheric measurements, the study of line 

parameters of many pollutant gases in the infrared region has been made 

with various tunable IR lasers, mostly with diode lasers. While the 

line positions have been studied more extensively, the line intensities 

have been studied much less and absolute line intensities only in a few 

cases. McDowell [l04] and Hinkley et al. [54] have summarized the 

results of previous research. Table 2 lists the works done before 1975 

with various tunable infrared lasers [54]. Table 3 summarizes the works 

after 1975 with tunable diode lasers only [105-127], 

The application of diode lasers in the analysis of gaseous air 

pollutants includes point sampling, in situ monitoring and long path 

monitoring. Each has its advantages and its particular usefulness. 

Their sensitivities are usually comparable with those of other methods 

or better. 

Point sampling measurements can be made either at ambient pressure, 

or at reduced pressure for high specificity [l28-13l]. For the detection 

by the transmission technique, a multireflection long-path cell can be 

used to achieve a better sensitivity [37,132,133]. This has been done 

for source sampling, such as vehicle exhaust sampling éind stack gas 

sampling, of ethylene and sulfur dioxide [37,134]. HCN, CH^, and 

water vapor in cigarette smoke have also been measured [l29,13l]. However, 
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Table 2. Molecular spectroscopy with tunable infrared lasers before 
1975 [54] 

Measurement Molecule Wavelength [|im] Laser 

HCl 1.2, 3.3 OPO, TDL 

HBr 1.9 OPO 

CO 2.4, 4.7 OPO, TDL 

CH^F 3.4 ZTG 

3.4 ZTG 

c* 3.4, 6.5 ZTG, TDL 

H CO 3.6 ZTG, TDL 

CO, 4.2 TDL 

"2 
4.6 TDL 

«3 4.7 TDL 

NO 5.4 TDL, SFRL 

"2° 5.3, 6.3 SFRL, TDL 

NO, 6.2 TDL 

so, 8.7 TDL 

NH^ 

00 

10.5, 11.8 TDL, SFRL 

C2H4 10.5 TDL 

10.5 TDL, HPG 

C2H3CI 10.5 TPM 

Absorption line 

spectra 

^OPOi optical parametric oscillator 

TDLt tunable diode laser 

ZTG: Zeeman-tuned gas laser 

SFRLj spin-flip Raman laser 

HPG: high pressure gas laser 

TPMj two-photon mixer 
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Table 2. (Continued) 

Measurement Molecule Wavelength [pm] Laser 

Pressure CO 4.7 TDL 

broadening H2O 5.3 TDL 

SO2 00
 

TDL 

NH3 10.5 TDL 

CO2 5.3 TPM 

Collisional "2° 5.3 TDL 

narrowing 

Nuclear CH, 3.4 PTG 

hyperfine NO 5.4 TDL 

structure 

Lambda-doubling NO 5.4 TDL, SFRL 

Zeeman splitting CH, 3.4 PTG 

NO 5.4 TDL 

CH, 3.4 ZTG 

H2CO 3.4 ZTG 

HDCO 3.4 ZTG 

Stark splitting NH2D 10.5 TDL 

CH3CI 10.6 TPM 

CH^Br 10.6 TPM 

Band SO2 8.7 TDL 

analysis SFe 10.5 HPG, TDL 

Laser gain CO 5.3 TDL 

lineshape C02 10.6 TPM 

Isotope lines 
_12.13L16 

4.2 

5.4 

TDL 

TDL 
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Table 3. Line parameter study with tunable diode lasers after 1975 

line intensity line line pres­ Band ref 
Molecule \ or abs. coeff. posi­ width sure analysis 

(um) tion broad­ spectrum 
ening 

HNO 11.3 X X X 41 

«2° 8.3 X 105 

10-15 X X X X 106 

H^SO^ 8.3 X 107 

8.2,11.3 X 108 

7.9-8.3 X 94,109 

CH^F 8.4 X 110 

9-10 X 111 

CH^I 11.8 X 112 

CFCI3 11.6 X X 113 

CF2CI2 10.8 X X X 113 

CO2 15 X X X 114,115 

16.2 X X X X 116 

4.5 X X 117,118 

13.7 X X X 119,120 

13.7 X X X 119,120 

H 13.7 X X X 119,120 

4.5 X 121 

CIO 11.8 X 122 

NH3 10.6 X 123,124 

8.3-12.5 X X 125 

8.5-10.4 X 126 

8.4 X 127 

10.6 X X 49 

°3 9.6 X 128 

sfe 10.5 X 122 

SO2 8.2 
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the detection of ambient air sample may require very long optical 

paths because of the low concentrations of trace gases present in the 

air. It appears that the photoacoustic detection may suit this partic­

ular application better [135] (to be discussed later). Nevertheless, 

Reid et al. [132,133] have achieved a detection limit of less than 1 ppb 

for the ambient detection of SOg, 0^, HgO, COg, N^O, NH^ and PAN. And 

El-Sherbiny et al. [128] have demonstrated 0.5 ppb detection limit of 

ozone. 

In situ monitoring performs the measurements in real time. It does 

not involve the taking of a sample for "off-line" analysis. This not 

only avoids the problems associated with sampling of reactive gases but 

also has the ability to measure the instantaneous changes of the 

interested gases. Both the vehicle exhaust monitoring (e.g. 

monitoring) and stack gas monitoring (e.g. SO^ monitoring) have been 

performed successfully by using tunable diode lasers [37,136]. 

Long-path atmospheric monitoring measures the total integrated pol­

lutant concentration over the optical path which is important for 

regional modeling. It has the advantage of increasing sensitivity with 

range and the disadvantage of being double ended. Some works have been 

done in this application area [137-139] and concentrations of trace 

gases (e.g. SO^» CO, NO, HgO) as low as ppb can be detected over 

pathlengths of hundreds meters to a few kilometers. 
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E. Techniques Applied to the Detection of Resonant Absorption 

The applications of the diode laser in monitoring gaseous air 

pollutants are usually based on resonance absorption of laser radiation. 

The techniques for the detection of these resonance absorption signal 

can be divided into three classes: direct transmitted photon detection, 

photoacoustic detection and heterodyne detection. The heterodyne 

detection will not be reviewed here because it is not related to any 

subject of this research work. The other two will be discussed next 

with emphasis on photoacoustic detection, which is the subject of the 

fourth chapter. 

1. Direct transmitted photon detection 

This is the most commonly used detection method among the three. 

It involves direct conversion of incident photons to charge carriers 

by various detection device such as thermal detectors, photoconductive 

detectors and photovoltaic detectors. This detection technique has 

been used in all the three application areas mentioned above. It is 

not necessary to have high laser power to achieve high sensitivity 

because it is the difference between incident and transmitted power 

that is being measured. However, it is also this difference measurement 

scheme that limits the minimum detectable concentration of this detection 

technique. 

Some efforts have been made to improve signal-to-noise ratio (S/N), 

and thus to lower the detection limit for the direct photon detection. 

Derivative techniques were the most studied ones. A small sinusoidal 

or a square waveform current was superimposed on the current ramp to 



www.manaraa.com

provide the wavelength modulation and thus to obtain the derivative 

spectrum. It was found that for long path monitoring this technique 

considerably reduced the noise caused by atmospheric turbulance and by 

scattering from aerosol. Ku et al. [l38] have measured changes in 

transmission of 0.3% for pathlengths up to a few hundred meters at 

atmospheric pressure, using a derivative/ratio technique. A detection 

limit of carbon monoxide of 5 ppb over 0.61 km path has been obtained. 

This system was modified later by Chaney et al. [l40] through the 

stabilization of laser frequency and the limitation of laser output to 

a single mode. Sensitivity variations of 0.7% were observed. Recently, 

Raid et al. [l32,133] were able to detect absorption as small as 0.001% 

in a multipass cell of pathlength 100 meter at reduced gas pressure of 

around 10 torr, using a second-harmonic technique. This technique 

-9 -1 
enabled them to measure absorption coefficients as low as 10 cm . SO^ 

concentration was measured in the low ppb range and other gases having 

stronger IR absorption than SOgCe.g. 0^» CO^, NO, CO, CH^, and NH^) 

were measured down to much less than 1 ppb. 

2. Photoacoustic detection 

Photoacoustic spectroscopy (PAS) (also called optoacoustic spectro­

scopy) provides a highly sensitive method for the detection of molecules 

in the ambient air [141-143]. PAS detection instrument consisting of 

radiation source, modulator and acoustic detector (e.g. microphone) is 

often called spectrophone. The detected photoacoustic signal is propor­

tional to both the power of the incident radiation and the concentration 

of the absorbing species. The high power lasers thus are preferred for 
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low detection limits (For the laser power information, refer to the 

introduction chapter). 

Continuously tunable SFR laser has been used in conjunction with the 

photoacoustic spectroscopic technique to detect gaseous molecules to ppb 

level [135,144-146]. Kreuzer and Patel [135] detected NO in vehicle 

exhaust and ambient air samples to a detection limit of 10 ppb. Patel 

et al, [144,145] and Burkhardt et al. [l46] launched a balloon-borne SFR 

laser-spectrophone detection system to monitor NO and HgO in the strato­

sphere. The power of the SFR laser used in these system was in the order 

of 50 mW which was about two orders of magnitude of that of tunable diode 

lasers. In addition to the SFR lasers, the discretely tunable lasers 

such as He-4)e, CO, CO^ and DF lasers, have been employed to detect a 

variety of pollutant gases for their operational simplicity and/or their 

higher power [l47-155]. Because of the low power of the diode lasers, 

there has been only one study done on PAS technique with this type of 

lasers [l52], A detection limit of 50 ppm was achieved for carbon 

monoxide in nitrogen using a double-pass cell, with a 96 (iW diode laser 

source. 

The ultimate detectable PAS signal is limited by noise in the 

transducer preamplifier and noise caused by Brownian motion of the 

molecules [l53,154]. In addition to these two sources of noise, there 

are background signals in a PAS cell due to window absorption and 

absorption in the wings of spectral lines of other species. Moreover, 

there may be noise in the measured data due to laser power fluctuations 

and amplifier gain variations. These background signals are the major 
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limitation upon the ability of the PAS technique to detect very weak 

absorptions. Some attempts have been made to reduce the background 

signal due to window absorption. They include (a) the use of a resonant 

cell with light beam chopped at a certain rate to produce the natural 

acoustic modes within the cell, and nodes near the windows [149-150, 

155-157]; (b) the use of a differential system consisting of two cells 

in series, with a common window [15l]; and (c) the modulation of either 

the laser frequency or the spectral frequency of the absorption line 

to be monitored by Stark or Zeeman effect [158-160]. Besides, the PAS 

signal can be enhanced by use of a multipass cell [150,161]. A compre­

hensive treatment of the entire subject of PAS detector design and 

evaluation has been published by Rosengren [154], and a comparison of 

resonant vs. nonresonant spectrophones has been prepared by Dewey [162]. 

A differential cell consists of two chambers placed end to end with a 

bore in between and a window on the bore. The balanced window heating 

in the two cells reduces the background signal. Absorption measure­

ments are made by filling one chamber with a test gas mixture (with a 

nonabsorbing gas), and the second chamber the nonabsorbing gas only. 

The pressure difference between the two cells then is measured. This 

differential signal represents the absorption coefficient of the test 

gas. Using a differential spectrophone operating at 1-Hz chopping 

frequency, and integration time to 2 minutes, Deaton et al. [l5l] reduced 

-9 -1 
the background signal to a value which corresponds to 3.3 x 10 cm per 

watt of laser power. This development permits not only the detection of 

gases such as ethylene in concentrations approaching 0.02 ppb with fixed-

frequency gas lasers, but also the use of lower power tunable serai-
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conductor diode laser for PAS detection in the low ppb level. 

Stark and Zeeman modulation can also be used to reduce the PAS back­

ground signal. In these modulation modes, the radiation beam is not 

chopped by mechanical chopper but modulated by Stark or Zeeman effect 

(i.e. the spectral line of the absorbing species is shifted in and out 

of the laser frequency by applying an electric or magnetic field onto 

the species respectively.) These techniques provide a new degree of 

discrimination between molecules whose absorption spectra overlap but 

exhibit different Stark or Zeeman effect. Discrimination will also be 

enhanced between signals due to near-resonant weak absorptions and 

signals due to the wings of a strong absorption line. Since the laser 

beam is incident on the cell consistently and unmodulated, the window 

surface absorption should be constant with the laser intensity and 

therefore will not contribute to the detected signal with the phase-

sensitive detection devices. Both the acoustical noise and the photon 

scattering due to the mechanical chopper will also be eliminated because 

no chopper is used in this technique. Bonczyk and Ultee [158] and 

Kaldor et al. [159] used a magnetic field to Zeeman-modulate the frequency 

of an NO transition and detection limit of a few ppm was obtained. Kavaya 

et al. [163] investigated the use of Stark modulation for PAS detection. 

Results showed that the background signal obtained by operating in this 

mode is 500 times less than that obtained by operating the same PAS 

detector in the conventional chopped radiation mode. The S/N was found 

greater in the Stark mode than in the chopped mode for pressures below 

•"7 —% 
500 torr. The minimum detectable absorption strength was 1 x 10 cm 

per watt of laser power. If a continuous tunable laser is employed. 
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one can eliminate PAS background signal effectively by wavelength modu­

lation of the radiation source. Because window surface absorption is 

independent of wavelength, no ac signal would be produced and detected 

if the source intensity is constant. Dewey [164] developed a simple 

theoretical model for wavelength modulation in PAS technique including 

derivative spectroscopy and wide modulation spectroscopy. Patel et al. 

[144] have demonstrated the usefulness of the latter in which the wave­

length was substantially modulated relative to the center of the gas 

absorption line. Derivative spectroscopy, on the other hand, will be 

the subject of the fourth chapter of this thesis. 

The acoustically resonant cell was first introduced by Dewey [149] 

and has been studied quite extensively since then. It not only 

accumulates acoustic energy in a standing wave to amplify the pressure 

signal, but also reduces the window absorption background signal by 

locating the acoustic nodes on the windows. Moreover, it provides 

a means for the continuous monitoring of the air sample (to be explained 

later). Kritchman et al. [166] analyzed the ultimate detectivity of ideal 

PAS cell and gave rigorous mathematical expressions for both signal 

and noise for a one-dimensional cell. They also constructed a longitud­

inal resonant cell and found minimum detectable concentration of 

ethylene in nitrogen as low as 0.3 ppb per watt of CO^ laser power for 

1-Hz detection bandwidth. The multipass resonant cylindrical cell is 

judged as one of the most promising designs for practical applications 

[150,165] and is expected to have a detection limit of sub-part-per-

billion per watt of laser power. Since the PAS signal is proportional 

to the beam power, it is a natural extension to place the cell inside the 
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laser optical cavity to result in multipass in the cell and at the same 

time to take advantage of the higher laser power in the cavity. 

Shtrikman and Slatkine [l6l] did this with a CO^ laser and resonant 

spectrophone and reported an improvement of sensitivity. Their system 

could operate in two modes: with windows or without windows. The window-

less spectrophone permits continuous seuipling, which would be desirable 

for ambient air monitoring, by introducing a slow flow of air through the 

cell, Absence of windows solves power loss problem due to the window 

reflection, yet it can greatly degrade the resonant quality of the 

cell. Thus, a cell with acoustic nodes on its ends, in which the 

holes will constitute a minimal perturbation, is necessary. Neverthe­

less, the sensitivity of the windowless system is still worse than that 

of the system with windows on the cell. Shtrikman's windowless system 

-7 -I 
was reported to have detection limit below 10 cm for 1-Hz bandwidth 

detection and was expected to reach 3 x 10 ^^cm ^ by the reduction of 

the laser internal losses. Recently, another intracavity resonant 

spectrophone was used in conjunction with a DF laser of subwatt power 

and showed a detection limit of 7 x 10 ^cm ^ for S/N of 1 [l67]. However, 

it is noteworthy to mention that the gain on S/N by using the resonant 

cell is usually not as great as it may seem. First of all, the volume 

of a resonant cell is considerably greater in general than that of a 

nonresonant cell. Thus, it requires more energy to heat up the same 

concentration of gases in order to obtain the same amount of pressure 

change. Secondly, the FAS signal intensity is proportional to 1/f 

where f is the modulation frequency of the laser beam. With the typical 

size of a resonant cell, the natural acoustic resonant frequency is 
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usually over 1 KHz vrtiile the nonresonant cell can use a frequency of 

only a few Hz to retain its highest obtainable signal. As a matter of 

fact, the most sensitive measurement reported to date was done with a 

carefully designed nonresonant cell employing six miniature microphones 

[168]. Its minimum detectable absorption was 10 cm ^ per watt of 

laser power. 

In view of the information reviewed here, we decided to tackle 

two of the existing problems associated with the use of tunable diode 

lasers in the analysis of gaseous air pollutants. The first one is 

the calibration of diode laser scan rate. An internal calibration 

scheme is developed based on the third approach of calibration methods, 

as discussed earlier. The linewidths, line positions and other line 

parameters can then be determined through this calibration scheme. 

The new internal calibration method is much more reliable than the 

old one and is simple enough to be performed on a daily basis. The 

second one is to apply the photoacoustic spectroscopy to the detection 

of gaseous air pollutants by the use of tunable diode lasers. Since 

the photoacoustic sensitivity is proportional to the power of light 

source employed, the use of diode lasers in this detection technique 

presents a challenge. Ammonia was chosen here as sample gas because 

of its importance in the air pollution. The details of these two sets 

of experiments will be discussed in the following two chapters. 
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III. INFRARED LINEWIDTH AND LINE POSITION MEASUREMENTS BY 

INTERNAL CALIBRATION METHOD 

A, Background and. Theory 

There are three fundeunental properties of an isolated spectral line. 

They are its center wavelength, intensity and shape. The tunable infrared 

laser technology has made very little impact on the absolute wavelength 

calibration, but it offers the capabilities of direct measurements of 

line intensity and line shape. The key to these is the laser's narrow 

linewidth and tunability. 

In the research work presented in this chapter, the line shape was 

used as a tool for calibrating the tuning rate of tunable diode lasers. 

If a proper reference standard can be found, the absolute frequency of the 

line of interest can then be obtained. This internal calibration scheme 

also has found its use in the study of pressure broadening effect. In 

addition, if desirable, the absolute line intensity can also be obtained 

from line parameters derived from line shape studies. In the following 

few pages the principles of this internal calibration scheme will be 

presented in detail. 

The spectral line shapes can be divided into two categories: 

homogeneous line shape and inhomogeneous line shape. Inhomogeneous line 

shape is caused by inhomogeneous broadening. This type of broadening 

permits different molecules undergoing the same nominal transition to 

absorb radiation corresponding to this transition at slightly different 

frequencies due to the small differences in the environment of each 
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molecule. The most familiar exemple of this type of broadening mechanism 

is Doppler broadening which is caused by the thermal motion of the 

molecules. The molecules emitting light of frequency v may move towards 

or away from the observer with velocity v. According to the Doppler 

effect, the radiation frequencies received by the observer then are 

different in each case as ( v + dv ) and ( v - dv ) respectively, where 

dv = v(l - (c is the speed of light in vacuum). With molecules moving 
c 

in all directions and various velocities, the observed line shape is 

therefore broadened and has the shape of a probability distribution curve, 

that is, Gaussian shape: 

4(v - V )2 in2 

(3.1) k(v) = 2S(ln2)^ Exp 

where S is the integrated intensity, is the center frequency, k(v) is 

the absorption coefficient at frequency v and Av^ is the Doppler line 

width (full width at half maximum (FWHM)). is given by the expression 

AVp = 7.162 X lO"^ V^VT/M cm~^ (3.2) 

where T is the absolute temperature and M is the molecular weight. 

On the other hand, the broadening mechanism, which permits each 

molecule to absorb radiation over the entire line width, is known as 

homogeneous broadening. This type of broadening is characteristic of any 

system with an exponentially decaying dipole correlation function, such as 

natural broadening, saturation broadening, and collision broadening. 

Therefore, it is really a reflection of the Heisenberg uncertainty 

principle. The decay process prevents the molecule from remaining in a 

specified energy state for a period longer than At, where At is the 
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lifetime of the molecular decay process, and the line width is 1/At. In 

the natural broadening, the natural linewidth exists because any molecule 

in its excited state has finite lifetime, which leads to an uncertainty in 

the energy level of the excited state as required by the uncertainty 

principle. Thus, the frequency v^for a transition between levels and 

Ej is no longer given uniquely by = (Ej^ - Ej)/h and the line has a 

finite width. 

A homogeneous spectral line always has a Lorentzian shape. As for 

the collision broadening, it is given by the expression 

S Av 
k(v) = ̂  —± — (3.3) 

(V - + iAvJzr 

where Av^ is the Lorentzian broadening linewidth (FWHM). k(v), S, and 

are as before. 

Collision broadening (also called pressure broadening) is caused by 

the intermolecular collisions of the gas molecules. The foreign-gas 

broadening is usually much less than self-broadening. The relationships 

between the Lorentzian width and the collisions which cause it are complex. 

More detailed treatment of this subject can be found in some monographs 

[169]. 

The value of various types of linewidths depends on the contributing 

broadening mechanisms. Natural linewidth is the ultimate linewidth of any 

spectral line. In the infrared range, the natural linewidth is usually 

in the order of 10 ̂  to 10 ̂  cm At low pressures (a few torrs), Doppler 

effect dominates the line broadening mechanisms and the linewidth is 

generally determined by the Doppler width which has a typical value of 

-3 -1 
10 cm . When the pressure is increased, the line shape and linewidth 
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are no longer solely determined by Doppler effect, but are also affected 

by pressure broadening which eventually becomes a dominant factor at 

higher pressures (e.g. a few tens of torrs). The pressure broadening 

linewidth increases with increased gas pressure and is dependent upon 

temperature and nature of the gas. At the pressure of 1 atm, it typically 

-1 -1 
ranges from 0.5 cm to 0.05 cm . At intermediate gas pressures, neither 

Doppler broadening nor pressure broadening dominates. The line shape is 

represented by Voigt profile [l70] which is formed by the convolution of 

Gaussian and Lorentzian line shapes. Some spectra have been measured in 

this regime, but no careful studies using tunable lasers have been made. 

The Voigt profile is very complex and cannot be evaluated in closed form. 

However, some approximate forms have been studied and detailed numerical 

tables have been given [l7l]. 

Some mathematical procedures for approximating Voigt profile have also 

been investigated. In this research work, an efficient procedure proposed 

by Kielkopf [l72] was adopted to generate the Voigt profile. When the 

Doppler width totally dominated at low gas pressure, the Lorentzian width 

could be assumed to be negligible when compared to the Doppler width. The 

experimental Doppler width then was determined by least-squares method 

through successive fitting to the Voigt profile. The same principle can 

be applied to the determination of Lorentzian width when both pressure 

broadening and Doppler broadening contribute to the spectral linewidth 

at intermediate pressure. Here, the experimentally determined Doppler 

width cannot be assumed to be negligible when compared to the Lorentzian 

width. Since the Doppler width can be calculated with sufficient accuracy 

with equation 3.2, the experimental Doppler width then was taken to fit 
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the calculated Doppler width to obtain the tuning rate of the diode laser. 

After the tuning rate was obtained, it was used to calibrate the pressure 

broadening linewidth and thus enabled us to study the pressure broadening 

coefficient introduced by self-broadening and/or foreign-gas-broadoiing. 

In addition, it also enabled us to calculate the absolute frequency of the 

line center if a reference standard frequency was available. 

B. Experimental 

1. Experimental components 

The components used in this work are summarized in Table 4. The 

details of some important components are given as follows. 

a. Vacuum and gas transfer system The schematic diagram of vacuum 

and gas transfer system used in this work is shown in Figure 5. In order 

to hold liquid helium to a reasonable amount of time, the cryostat must be 

-5 
pumped down to at least as low as 10 torr prior to a run. The pumping 

process was accomplished in two steps, first with a mechanical pump, and 

followed with an oil diffusion pump. The pressure of the system was 

measured with an ion gauge located between diffusion pump and cold trap. 

The system was designed so that during the second pumping stage the oil 

diffusion pump kept pumping the cryostat while the rest of the vacuum line 

(separated by valve VI) can be used for gas transfer. 

Prior to the transfer of gas into the gas cell, the gas transfer 

system was pumped down with the mechanical pump A, then valve V2 was closed 

to stop pumping. Gas samples were introduced from gas inlets A, B, or C. 

The gas pressure could be measured with a mercury manometer shown on the 

left side of Figure 5 or capacitance manometers attached on the gas cell. 
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Table 4. Experimental components for the study of internal calibration 

Component Model No. Manufacturer 

Cryostat 0-2-250 

+0-7M-H 

Andonian, Waltham, MA. 

Diode laser package A TDL Arthur D. Little, Cambridge, 
MA. 

Diode laser package B SDL-30 Laser Analytics, Bedford, MA. 

Power supply for diode laser Home made 

Regulated DC power supply 6226B Hewlett-Packard, Santa Clara, 
CA. 

Monochromator E-1 Perkin Elmer, Norwalk, CT. 

Tuning fork L2C Bulova, Woodside, NY. 

HgCdTe detector DMSL 45 Infrared Associates, New 
Brunswick, NJ. 

Lock-in amplifier 9503 Ortec, Oakridge, IN. 

A/D converter ADC-ER12B DATEL, Mansfield, MA. 

Paper tape punch 3444 Digital Product, San Pedro, 
CA. 

X-Y recorder 7001A Moseley, San Diego, CA. 

Capacitance manometer 221 MKS Instruments, Burlington, 
MA. 
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The gas cell (Figure 6) was designed so that two capacitance manometers can 

be mounted, one for low pressure (< 10 torr) and the other for higher 

pressure (< 1000 torr). It was imperative to have the manometers attached 

as close to the cell as possible to ensure the accurate measurements of 

sample pressures. After the cell was filled with gas sample, valve A was 

closed. Before taking the spectrum, the sample was allowed to sit for 10 

minutes to reach equilibrium. 

b. Components of laser system 

1) Laser package The heart of a diode laser spectrometer is 

the tunable diode laser crystal. The commercially available laser crystals 

are usually mounted in packages. Two different laser packages, as shown 

in Figure 7, have been purchased from two manufacturers. The laser package 

A has both the top contact and base contact made of brass. A ceramic 

spacer is placed in the center of the package to separate the contacts. 

One laser contact is made directly to the base contact with a cold solder 

joint and the other laser contact is a cold soldered gold wire which 

extends from the laser to the top contact. Electrical contact to the laser 

is made with negative lead attached to the top. The laser package was 

mounted to the heat sink with a set screw. The laser package B is made of 

gold coated copper. It is specially designed to provide bilateral heat 

flow from both contact regions of the laser crystal. It can be easily 

mounted to a heat sink by using its two mounting holes shown in Figure 7. 

The top contact is attached to the negative lead of the current supply and 

the base contact to the positive lead as in the package A. 

The cooling of the laser is by thermal conductivity through the base. 

Any design for holding this package onto the cold head of the cryogenic 
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Figure 7. Laser packages used in this work. A is 
manufactured by Arthur D. Little. B is 
manufactured by Laser Analytics. All 
dimensions are in inches. 
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system must be of excellent contact to reduce electrical and thermal 

resistance. The laser package mount, also serving as a heat sink, must 

have a mass big enough to ensure a stable temperature of the laser crystal. 

2) Cryostat and laser mount The cryostat used to mount and 

cool down the diode laser is a commercial cryostat manufactured by 

Andonian, as shown in Figure 8. Two types of laser-package mounts, also 

shown in Figure 8, have been designed to hold the two different laser 

packages. Both mounts are made of oxygen-free copper «md the packages are 

hold in place with set screws. The mounts then are bolted to the cold head 

of the cryostat with an indium gasket between the two to ensure good 

thermal contact. The cryostat is facilitated with a 20-ohm heater around 

the cold head to provide temperature variation lAen needed. The throttle 

valve on the cryostat enables us to adjust liquid helium flow rate to the 

cold head, which in turn controls the laser temperature. The front window 

of the cryostat is a BaF^ flat which is chosen because of the low solubility 

of BaFg in atmospheric moisture. The rear window is merely a piece of flat 

pyrex glass. The cryostat and laser were usually cooled down to liquid 

nitrogen temperature the day before and subsequently cooled to liquid 

helium temperature immediately prior to a run. Detailed procedures are 

described in Appendix A. 

3) Laser current supply The regulated laser current supply 

(Figure 9) is a modification of a previous design [l73]. The operational 

procedure is also described in Appendix A. 

The circuit at the bottom of Figure 9 is a voltage ramp generator. 

The ramp time is made variable from about five seconds to eighteen minutes 

with the variable resistors in the circuit. The voltage ramp generated 
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from this circuit is fed into a DC offset circuit (in the center of Figure 

9) which contains two voltage dividers. The first one provides any voltage 

from 0 to 3 volts. The second voltage divider adds the voltage ramp from 

the ramp generator to the voltage provided by the first voltage divider 

circuit. The voltage ramp coming out of the DC offset circuit then is sait 

into the circuit, shown at the top of Figure 9, irtiich provides the current 

for the semiconductor diode laser. 

2. Diode laser spectrometer setup for conventional IR spectroscopy 

The diode laser spectrometer used in this work is of conventional 

design as shown in Figure 10. Its operational procedures are also included 

in Appaidix A, Laser crystals of stripe geometry of the type Pb^_^Sn^Se 

were used. Cooling was provided by a liquid helium cryostat (Figure 8) 

and a temperature of about 4 K was used throughout. Radiation from the 

laser was collected by a BaFg lens of 63,5 mm diameter and 76 mm focal 

length and was collimated onto a gold coated concave mirror of 108 mm 

diameter and 550 mm focal length. The mirror focused the radiation at the 

entrance slit (12 mm x 0.2 mm) of an infrared monochromator operating in 

the double pass mode at a dispersion of 0.97 cm ^/mm. The slit width was 

set at 200 p, to 300 |j, depending upon the mode pattern. The mode center 

was read from the monochromâter. A Bulova tuning fork light chopper with 

1/2 inch by 1/4 inch vanes was placed adjacent to the slit to modulate the 

radiation at 1 KHz. A gas cell, 2.5 cm diameter and 2 cm long, fitted with 

KBr windows was placed at the exit slit of the monochromator. The laser 

radiation was collected after the gas cell and focused by a NaCl lens of 

35 mm diameter and 70 mm focal length onto a photoconductive HgCdTe 

infrared detector. The reference signal from the chopper and the signal 
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from the detector were analyzed by a lock-in amplifier. The laser was 

powered by a current ramp, which also controlled the x-axis of an X-Y 

recorder. The Y-axis then displayed the laser intensity as registered on 

the lock-in amplifier. 

To handle the large amount of data generated, the output from the lock-

in amplifier was simultaneously digitized by an A/D converter at 1 second 

interval during the laser scan, and recorded by a paper-tape punch for 

eventual computer analysis. Since the internal calibration scheme was used 

here, it was not necessary to determine the exact current ramp, as long as 

the séune ramp was used throughout. The intensity data taken every second 

established an arbitrary horizontal scale. The zero intensity level was 

recorded at the end of each laser scan by blocking the laser beam. 

Reagent grade gases (Scientific Gas Product, S. Plainfield, NJ) were 

used without further purification. Pressures were determined by factory 

calibrated capacitance manometers. Data analysis was performed on a CDC 

7600 computer of Lawrence Laboratory facility (Berkeley, CA) and digitized 

spectra were plotted on a National Advanced System AS/6 computer (National 

Advanced System, Mountain View, CA) and IBM 1627 plotter (IBM, White Plain, 

NY). 

3. Data analysis 

The digitized data punched on paper tape were read off with a computer 

program by the AS/6 computer and plotted by the IBM 1627 plotter. The data 

then were analyzed by the CDC 7600 computer with a second program to obtain 

the linewldths and other line parameters of the best-fit Voigt profile. 

The so-obtained parameters were taken to the AS/6 computer and the plotter 

again for the plotting of both the best-fit Voigt profile and the experi-
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mental spectrum with a third program for easy comparison of their agreement. 

The three computer programs are listed in Appendix B. 

To analyze the spectrum, the laser intensity, the transmitted intensity 

(I) and the zero intensity line (irtiich was generated by blocking laser beam) 

were required. Since the laser intensity was not uniform over the scan, 

it was necessary to generate a reference intensity level in the region of 

the absorption line by a polynomial best-fit covering the points immediately 

adjacent to the absorption line. The actual absorption profile was then 

determined by normalizing the transmitted intensity (I) of each experimental 

point to this reference intensity (1^). Normalized Voigt profile (in 

trancmittance) were generated by an efficient mathematical procedure [l72] 

for a number of trial values of line center (v^), Doppler width and 

Lorentzian width (Av^). To provide for errors in determining the trans-

mittance at the absorption peak, that value was also varied in the trials. 

The generated Voigt profiles were then compared to the experimental profiles 

point by point. Best-fit was determined by the least-squared deviation 

summed over all experimental points. 

C. Results and Discussion 

1. Pressure broadening of NH^ 

The internal calibration scheme is ideally suited for linewidth 

measurements since the scan rate (tuning rate) at the exact position of the 

spectral line can be accurately measured. NH^ is an important air pollutant 

and makes an interesting case because of its low molecular weight and large 

collisional cross section, both of which lead to substantial pressure 

broadening. So there has been a number of theoretical [l74,175] and experi-
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mental [54,125] studies on this subject as expected. 

NHg line aP (4,2) at 852.75 cm ^ was chosen for a demonstration of the 

simplicity and reliability of this internal calibration on its application 

to the pressure broadening study because it is a well isolated spectral 

line and has a reasonably strong absorption. Both self-broadening and 

nitrogen-broadening of this line were studied. All the data were taken in 

the same day to reduce the variation of laser frequency and tuning rate due 

to the temperature cycling and instability of the laser. The results of 

the study as well as the identification of the NH^ line are presented as 

follows. 

a. Identification of NH^ line The NH^ line was easily identified 

as aP(4,2)at 852.75 cm ^ by comparison of monochromator setting and 

literature values of peak positions [l75]. This line was the only one in 

the mode of 852.82 cm which was read from a calibrated monochromator 

operating at a spectral width of 0.3 cm According to literature [l75], 

the line positions adjacent to this value with reasonably strong absorption 

were 851.34, 852.75 and 853.58 cm The aP ( 4,2) line could thus be 

unmistakenly identified. 

b. S elf-broaden in g of NH^ Self-broadening spectra were taken with 

various NH^ pressures in a random order to avoid systematic errors. In 

order to assure significant absorption for spectral fitting, the lowest 

pressure used was 0.55 torr, which was expected to be low enough to show 

"pure" Doppler width [54] (It was found out later to have nonnegligible 

Lorentzian width). The highest pressure used was 3.05 torr, above which 

the absorption line was saturated. 

Under the assumption that Lorentzian width was negligible at pressures 
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up to 0.75 torr, the experimental Dopplar half-width was obtained by the 

above described process for data analysis. However, it was noted that the 

fitting was not good (first approximation). The so-obtained Doppler 

half-width then was used to calculate Lorentzian half-widths at higher 

pressures. Surprisingly, the plot of NH^ pressure vs. Lorentzian half-

width (HWHM) showed that the best-fit line of the experimental data to the 

linear equation Y = aX + b was not passing the neighborhood of the origin 

as it should if the above assumption is valid. Instead, this best-fit line 

intercepted the Y axis at a negative value (See Appendix C for the calcula­

tion of a least-squares fitting line and the standard deviation of its 

slope). This was an indication of the existence of Lorentzian half-width 

at low pressures (< 0.75 torr) and that the experimental half-width 

(assumed to be purely Doppler) actually have nonnegllglble contribution 

from the Lorentzian width. This explains the poor fitting of experimental 

line shape to Voigt profile. Fortunately, the Doppler half-width could be 

derived from the best-fit Voigt profile independent of the Lorentzian 

half-widths, and accurate calibration was still possible. However, the 

utilization of an approximation approach was necessary in order to effi­

ciently extract the true Doppler half-width. The slope of the best-fit line 

for the plot of NH^ pressure vs. Lorentzian half-widths (i.e. the pressure 

broadening coefficient) from the first approximation was used to calculate 

Lorentzian half-widths which in turn were used in the Voigt profile to 

obtain Doppler half-widths of the second approximation at low pressures. 

The second-approximation Lorentzian half-widths were calculated from these 

second-approximation Doppler half-widths, they were then used to obtain 

second-approximation pressure broadening coefficient. The same procedure 
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was repeated until the difference between the slopes of two successive 

approximations was less than the uncertainty of the slopes. The Doppler 

half-widths of the fourth approximation calculated for the six NH^ pressures 

between 0,55 torr and 0,75 torr were in good agreement to each other with 

a standard deviation of ± 1,0 MHz. This value was higher than the estimated 

accuracy of the individual fitting (± 0.3 MHz). Possible reasons for this 

would be the errors introduced by the approximation approach and the minor 

variation of the diode temperature. 

For the scan rate calibration, only those scans with low NH^ pressures 

were used since the spectral fitting is less sensitive to the Doppler 

component at high pressures, and thus the reliability deteriorates. The 

same scan rate was assumed for the studies at higher pressures which were 

all performed in rapid succession. All the half-widths obtained from the 

fitting to Voigt profile were of the same arbitrary unit and were calibrated 

with the true Doppler width which is 76,525 MHz calculated from equation 

3,2 with T = 297,1°K, M = 17,03 gram and = 852,75 cm At this point, 

one should realize that the Doppler width obtained by this Voigt profile 

generating procedure [l72] is not the true Doppler width, but a factor of 

1/Vln2 of that value. 

Figure 11 shows the excellent fitting of experimental spectral lines 

to Voigt profile at various pressures. The results of the fourth approxima­

tion are tabulated in Table 5 and are used to obtain Figure 12 where the 

Lorentzian half-width is plotted as a function of NHg pressure. It can be 

seen that the best-fit line passes the origin. The least-squares fit to 

the points in Figure 12 gives a self-broadening coefficient (full width) 

of 26,2 ± 0,4 MHz/torr and a correlation coefficient of 0,9981. This is 
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Figure 11. Computer plotted spectra of self-broadening of NH-
line at 852.7 cm~^, + represents experimental 
data. Solid lines over experimental data represent 
best-fit Voigt profiles. Solid lines under the NH-
peaks represent 4th degree polynomial best-fit base 
lines. 
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Table 5. Spectral data of self-broadened NH^ line at 852,7 an~^ 

W Q W ̂  Least-Squared Deviation 

.550 .434 46.727 7.27 8.871 X 10"^ 

.611 .514 46.713 8.08 9.607 X 10-4 

.606 .445 45.306 8.01 6.647 X 10-5 

.614 .467 45.898 8.12 8.815 X 10-5 

.729 .544 45.672 9.64 9.911 X 10-5 

.754 .557 45.430 9.97 6.020 X 10-5 

.893 .682 12.04 9.617 X 10-5 

.956 .664 12.85 1.044 X 10-4 

1.17 .793 15.31 9.991 X 10-5 

1.24 .872 16.96 1.626 X 10-5 

1.24 .770 16.18 1.553 X 10-4 

1.25 .786 16.92 1.114 X 10-4 

1.33 .899 18.55 9.597 X 10-5 

1.36 .951 16.88 2.612 X 10-4 

1.70 .975 23.10 1.807 X 10-4 

1.72 .970 22.52 2.188 X 10-4 

2.06 1.082 27.48 1.664 X 10-4 

2.06 1.058 28.02 1.756 X 10-4 

2.41 1.260 30.96 1.699 X 10-4 

2.47 1.185 32.22 3.588 X 10-4 

3.05 1.425 38.62 3.960 X 10-4 

; NHg pressure in torr. 

b^^ Absorbance at the line center. 

Doppler half-width in MHz. 

Lorentzian half-width in MHz. 
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Figure 12. SeIf-broadened linewidths of NH- at 852.7 cm using 

internal calibration. is pressure and 

is Lorentzian width (HWHM)? Slope = 13.1 +0.2 MHz/torr. 
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to be compared to the published value of 25 MHz/torr [l74]. Since the 

cross section changes with specific vibration-rotation lines, the comparison 

only shows that the values are in the same general range. Naturally, 

because our value was obtained with internal calibration, the accuracy is 

expected to be higher. In addition, the accuracy of the internal calibra­

tion scheme should be even better if the very low pressure (e.g. 0.05 torr) 

was used to attain "pure" Doppler width instead of taking approximation 

approach to extract it. This can be done by simply lengthening the gas 

cell. However, to study the self-broaden ing effect of this NH^ line, the 

gas cell should still be short to avoid saturation of the absorption at 

very low pressure. 

c. Nitrogen-broadening of NH^ In the nitrogen-broadening study of 

NH^ line at 852.75 cm the NH^ pressure was kept within the range of 

values in Table 5 and was measured for each scan. The data points were 

again taken in a random order, and interposed among the calibration and 

self-broadening data points. The highest total pressure used was 64.5 torr 

with nitrogen pressure at 62.3 torr, and NH^ pressure at 3.05 torr. Above 

this pressure the line shape was broadened so much that it was difficult 

to be analyzed with sufficient accuracy. Figure 13 shows the good fitting 

of experimental spectral lines to Voigt profile at various pressures. Table 

6 lists the spectral data of this nitrogen-broadened NH^ line. A value for 

the Lorentzian component could be obtained from the best-fit Voigt profile, 

and must be corrected for the self-broadening of NH^ (obtained above) 

before being plotted. This correction can be easily made by the subtraction 

of self-broadening Lorentzian component from the total Lorentzian width 

since the pressure-broadening effects caused by more than one species are 
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Figure 13. Computer plotted spectra of N--broadening of NH_ 
-1 

line (852.75 cm ) at various N2 pressures. NH^ 

pressure is fixed to 0.894 torr. 
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Table 6. Spectral data of N^-broadened NH^ line at 852.7 cm 

Least-Squared Deviation 

6.68 0.299 23.28 2.364 X 10 

6.68 0.297 24.52 8.009 X 10-5 

29.6 0.101 75.41 7.837 X 10-5 

29.6 0.117 68.47 1.007 X 10-4 

40.3 0.064 105.95 6.531 X 10-5 

40.3 0.076 97.15 5.462 X 10-5 

12.6 0.311 40.84 7.933 X 10-5 

12.4 0.347 37.49 1.822 X 10-4 

24.7 0.195 75.93 1.346 X 10-4 

24.6 0.208 79.11 1.037 X 10-4 

36.1 0.124 107.16 1.328 X 10-4 

36.1 0.154 104.08 5.257 X 10-5 

44.3 0.097 108.38 7.617 X 10-5 

44.3 0.119 108.38 7.894 X 10-5 

Pressure in torr. 

^ : N- pressure in torr. 

^2 
^A: Absorbance at line center. 

^ : Lorentzian half-width in MHz, corrected for the self-broadening 

of NHg. 
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P„„ P„ A W- Least-Squared Deviation 
NH~ N_ L 

2.80 0.624 10.60 7.717 X 10-5 

2.78 0.624 9.137 1.010 X 10-4 

9.14 0.425 29.76 8.142 X 10-5 

9.13 0.420 27.81 1.185 X 10-4 

18.4 0.277 50.55 1.390 X 10-4 

18.3 0.280 55.00 1.408 X 10-4 

31.0 0.182 82.53 1.497 X 10-4 

39.7 0.129 103.92 7.145 X 10-5 

39.7 0.146 104.43 8.544 X 10-5 

48.9 0.097 124.19 7.885 X 10-5 

48.9 0.104 123.29 1.413 X 10-4 

46.5 0,220 117.66 2.020 X 10-4 

46.4 0.306 122.44 1.171 X 10-4 

46.2 0.327 128.36 1.194 X 10-4 

62.3 0.202 150.43 1.171 X 10-4 

62.3 0.236 161.68 1.564 X 10-4 
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additive. Figure 14 shows the nitrogen pressure vs. the corrected nitrogen-

broadened Lorentzian half-width. The least-squares fit gives a nitrogen-

broadening coefficient (full width) of 5.2 ± 0.1 MHz/torr and a correlation 

coefficient of 0.9907. This compares with the published value of 6.3 mz/ 

torr for another line. The slightly larger scatter, when compared with 

above self-broadening study, in the data here reflects the difficulty in 

preparing well-defined mixtures of the two gases, and the larger uncertain­

ties in the Voigt fitting when the broadened line degraded the choice of 

the reference intensity I^. The latter can probably be improved by a 

double-beam arrangement. Still, the internal calibration method increases 

the accuracy of the measurements. 

2. Line positions of SO^ 

Since SO^ is one of the very important gaseous pollutants, there has 

been a number of experimental [63,176] as well as theoretical [l77] studies 

on the band near 1130 cm The abundance of well-resolved vibration-

rotation lines in this region presents a good test for our calibration 

scheme. 0.4 torr of SO^ and 3.0 torr of NgO were used in two gas cells 

placed in series in the light path for this study. The raw data were 

actually taken a few years back by Rex Morris with another laser diode. 

The resulting intensities over the laser scan are shown in Figure 15 as the 

triangular points, the level at the far right represents the zero intensity 

level. The baseline (reference intensity) at each absorption peak was 

determined by polynomial best fit of the neighboring points, and was 

plotted as a solid line under the SO^ peaks (1 through 5). The best-fit 

Voigt profiles are also plotted as solid lines over the experimental points. 

As is shown in Figure 15, the fit in each case is extremely good. In fact. 
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Figure 14. Broadening of NH^ line (at 852.7 cra"^) by N. using internal 
calibration. is nitrogen pressure and is Lorent-

zian width (HWHM^. Slope = 2.6 + 0.05 MHz/torr. Correla­
tion coefficient = 0.9907. 
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Figure 15. Calibration of SO line positions by NgO reference lines. 
1-5, SO lines; A, N_0 line at 1180.052 cm~^j B, N.O line 
at 1180.206 cm"!. Spectral fitting is described in text. 
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the average standard deviation of each experimental point from the best-fit 

Voigt profile is of the order of 0.01 transmittance units. The two NgO 

peaks were also fitted to Voigt profiles to locate the exact line centers, 

which were then used as an absolute calibration. 

The Doppler widths of the SOg lines are calculated to be 54.533 Mlz 

be utilizing equation 3.2 with T = 298 K, = 1180,052 cm ^ and M = 64.063 

grams. To a first approximation, was considered a constant over the 

narrow spectral range of the laser scan. The values of in arbitrary 

units, obtained from the fitted Voigt profiles were then used to determine 

the scan rate at each line position. These scan rates were then fitted to 

a 4th degree polynomial to establish the scan rates at all points in the 

scan. Table 7 lists the scan rate (AVjj/2b) at each peak in computer unit 

where Av^ is the calculated Doppler width in Mlz and b is the measured 

Doppler half-width in computer units. The change of scan rates makes a 

smooth curve as shown in Figure 16. The two circled dots represent data 

that are extrapolated from the smooth curve and all the 7 points were used 

for the polynomial fitting. The extrapolation is quite necessary if a 

good fitting to the experimental points is to be obtained. 

The absolute positions are available for the N^O lines A and B as 

1180.052 cm ^ and 1180.206 cm ^ respectively [8l]. The N^O line center 

at 1180.052 cm ^ was determined with less uncertainty in these scans, so 

it was used exclusively for absolute calibration. The other N^O line 

position served as a check of the goodness of the calibration, and was 

found to lie within the precision of the experiment. The positions of the 

SO2 lines are determined from the scan rates as well as the absolute 

-1 
calibration line, i.e. 1180.052 cm line of NgO, by the equation; 
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Table 7. Peak centers and scan rates at SO^ and NgO line centers around 
1180 cm"^ in computer units 

Peak No. Peak Center®(Computer Unit) Scan Rate (Computer Unit) 

1 123.87 10.05 

2 216.11 11.18 

3 302.91 11.65 

4 449.36 12.72 

5 466.06 12.79 

A 183.25 

B 545.17 

^eak center here actually only represents the current applied to 
the laser. It is not a linear function of the real frequency. 
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Figure 16. Laser frequencies in computer units vs. scan rates in 
computer units. Dots represent experimental data. Dots 
in circles represent extrapolated data. Solid line 

represent the best-fit fourth polynomial curve. Notice 

that laser frequency in computer unit is not a linear 
function of the real frequency. 
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*2 
Av = / (scan rate) dx 

*1 

where scan rate = AVp/2b = a^ + a^x + a^x^ + a^x^ + a^x^. 

Here x^ is the position of 1180.052 cm ̂  line of N^O in computer unit, Xg 

is the position of the unknown line of SO^ in computer unit, and Av is the 

frequency difference between the N^O line and the unknown line. The results 

obtained along with the calibrated scan rates are shown in Table 8. Figure 

17 exhibits the calibrated scan rate as a function of laser frequency. The 

error associated with the determination of the number of computer units 

that corresponds to the individual SOg Doppler widths has been estimated 

to be ± 0.5%, or ± 0.2 MHz, i.e., approaching the resolution of the laser. 

Naturally, the uncertainty in MHz for the calibration of absolute frequency 

is dependent upon how far the line being calibrated is from the reference 

line. Lines closer to the reference can be calibrated more accurately. 

Because of the small error by this calibration scheme, the main uncertainty 

in Table 8 is dependent upon the accuracy the tabulated values of the two 

N^O lines and the interpolation of the scan rate. Since reference lines 

can in principle be traceable to frequency standards, the uncertainty is 

not a limiting factor in this calibration scheme. 

It should be noted that even at 0.4 torr of SOg, the contribution of 

self-broadening of the spectral line cannot be neglected. The use of a 

Voigt profile fitting once again eliminates the need for any assumption 

concerning this contribution, and the Doppler contribution can be 

independently determined as in the study of pressure broadening of NH^. 

Naturally, the gas pressure still should be low to improve the accuracy in 

determining the Doppler contribution. The pressure of N2O was chosen so 
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Table 8. Calibrated peak centers and scan rates of SO. absorption lines 
at 1180 cm-l 

Peak No.* Peak Center Position Scan Rate^ 
(cm-l) (cm"^/point) 

1 1180.035 6.70 X 10-4 

2 1180.068 7.46 X 10-4 

3 1180.101 7.77 X 10-4 

4 1180.160 8.48 X 10-4 

5 1180.168 8.53 X 10-4 

lumbers correspond to the labels in Figure 15. 

^Scan rate is determined as the spectral separation for consecutive 
data points in Figure 15. 
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Figure 17. Calibrated scan rates as a function of laser frequency. 



www.manaraa.com

that the weaker line, B, showed enough absorption for satisfactory fitting. 

The contribution from self-broadening is much larger in this latter case. 

However, the location of the line center, which is the only information 

used, can be determined accurately for each NgO line. The scan rate at the 

two NgO lines can still be determined, but these are not used in the 

calibration because of the larger errors expected. The internal calibration 

has two advantages. First, any molecule, including the one of interest, 

can be used for the calibration. For systems with complex absorption bands, 

which in general are the ones of most interest at very high resolution, the 

internal calibration scheme works best because of the abundance of calibra­

tion points. Secondly, very high precision can be attained by this 

calibration scheme because of the sharp, Doppler-limited profiles while the 

broad, sinusoidal shape calibration trace produced by a typical étalon is 

difficult to have its peak defined to a high accuracy. For comparison, 

a typical commercial air-spaced étalon has a fringe spacing of 0.015 cm ^ 

(450 MHz). Assuming typical finesse, the étalon peak can only be located 

to an accuracy of ± 90 MHz at best. This is definitely inferior to the 

present scheme, which for line pairs separated by the order of the Doppler 

width, can be reliable to ± 0.3 MHz, simply because calibration peaks are 

sharper and can be much closer spaced than étalon peak. In addition, when 

an étalon calibration is employed, it is usually assumed a constant scan 

rate within the fringe. This is obviously not a good assumption for this 

particular kind of laser since the change of scan rate is as large as 5% 

in the worst case (near peak 1 and 2) for one fringe spacing. 
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D. Conclusion 

In this chapter we have demonstrated a simple and reliable internal 

calibration scheme, based on the same line of interest, for the linewidth 

measurements, and for the determination of absolute line positions in 

conjunction with at least one reference line. It presented only less 

than t 2% of uncertainty in pressure broadening study whereas + 10% was 

a quite typical value in previous studies. As to the determination of 

absolute line position, this calibration scheme is the only one comparable 

-4 -1 
in accuracy to heterodyne method, which is accurate to 10 cm . The 

accuracy of this internal calibration can be expected to be further 

improved if sufficiently low pressures are used to obtain Doppler widths 

and if the diode laser temperature is controlled more precisely. Since 

the heterodyne method seriously suffers from the fact that the line of 

interest has to be adjacent to the gas laser line to 0.1 cm , the internal 

calibration scheme therefore can be considered superior to the heterodyne 

method in this respect. If a minicomputer is interfaced to the laser 

spectrometer, the calibration can be done in essentially real time. 

Extension of the same concept to the calibration of tunable visible lasers 

should be equally reliable. 
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IV. PHOTOACOUSTIC DETECTION OF GASEOUS AIR POLLUTANTS 

A. Background and Theory 

The photoacoustic effect in both gaseous and non-gaseous matter was 

discovered in the nineteenth century and was first reported in 1880 by 

Alexander Graham Bell [l78]. But evidently it was regarded as a curiosity 

of no practical value and soon was forgotten. It lay completely dormant 

for nearly 50 years until the advent of the microphone. Since then it 

has been used for many years mainly in nondispersive-type IR gas analyzers 

[179]. However, between 1950 and 1970 the photoacoustic gas analyzer 

employing a conventional light source gave way to the more sensitive gas 

chromatography. And the photoacoustic spectrometer was overtaken by the 

more versatile infrared spectrometer. During this period, the photoacoustic 

effect was primarily employed to study vibrational lifetime and other 

aspects of radiationless deexcitation in gases. The advent of the laser 

provided a major impetus to photoacoustic spectroscopy in the early of 

1970s, and once again photoacoustic gas analyzers and spectrometers found 

exciting uses [141,149,165]. 

A simple physical description of the photoacoustic effect can be 

given by considering the following experiment. A cylindrical tube is filled 

with a gas mixture to be analyzed. Optical radiation containing wavelengths 

that can be absorbed by the gas is directed along the axis of the tube. 

Infrared absorption produces excited vibrational-rotational states in the 

absorbing molecules, and the absorption of ultraviolet radiation produces 

excited electronic states. Collisions between the excited molecules and 
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the background gas Increase the translatlonal energy and hence the pressure 

of the sample. The incoming radiation is modulated so that an acoustic 

signal is produced. A sensitive microphone connected to the wall of the 

chamber can be used to detect this variation in pressure. Such an 

instrumental setup consisting of radiation source, modulator and acoustical 

detector is often called spectrophone. 

Roessler and Foxvog [l80] have derived a very simple theory for the 

photoacoustic signal, which assumes a uniform pressure rise and neglects 

thermal and viscous losses at the cell walls. The photoacoustic signal, 

V, derived by this theory is expressed as 

V = -29- [i _ EXP(-aCL)] (4.1) 

where W is the incident optical power, L is the cell length, C is the 

sample concentration, a is the absorption coefficient, and R is the cell 

responsivity. The cell responsivity is given by 

R = (Y - DslzVT 
TODV 

where S is the microphone sensitivity (mV/Pa), m is the angular modulation 

frequency, V is the cell volume, and Y is the ratio of specific heats of 

the sample. 

However, the pressure dependence of the photoacoustic signal was not 

included by equation (4.1) and requires a more sophisticated treatment. 

Wake and Amer [l8l] have derived an equation to describe the pressure 

dependence of the PAS signal of a mixture of absorbing and nonabsorbing 

gases, based on the equation derived by Kerr and Atwood [l4l] for the total 

pressure rise in PAS detection. There were several assumptions made in this 

derivation. First of all, the cell was assumed long and thin, so heat loss 
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through the end windows was small compared with heat loss to the walls. 

Secondly, the laser beam was assumed to have a Gaussian intensity distri­

bution and cylindrical symmetry. Thirdly, an assumption of 0(PQ) « 1 was 

made, where 0(Pq) was gas absorptivity at pressure Pq. When the exciting 

light is approximately square-wave modulated, the first harmonic lock-in 

amplifier output is derived as 

W P D„exp(i0„) 

w 
where PCP^) is power absorbed per unit length, Pq and T are the equilib­

rium pressure and temperature within the cell, respectively; a is the 

radius of the cell, k is the effective thermal conductivity and 5 is the 

effective thermal diffusivity of the mixture; is the mth root of the 

zeroth order Bessel function JQ(0 = 0, D^(b) are numerically calculated 

coefficients which depend on b, the ratio of the Gaussian beam waist to 

cell radius; S(FQ,YIT) is the sensitivity of the microphone, and tan8^ = 

(cua^/a Here the dependence of the microphone sensitivity on PQ, y 

and T is given by 

S(P„,Y,T) = s,,,,, 1 

where B = 1, y = (C^ + BO/C^; = x^C^^ + (1 - x^)Cpj - R, and is the 

molar fraction of i, the optically absorbing gas; the nonabsorbing gas is 

denoted by j. This equation indicates that the sensitivity of the micro­

phone increases as the pressure decreases. 

Figure 18 shows the experimental curves and theoretical curves predict­

ed by equation (4.2) for CH^ at a pressure of 10 torr in various nonabsorb­

ing gases. The total pressure giving optimum PAS signal is dependent upon 
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Figure 18. Photoacoustic signal as a function of pressure for 
10 torr CH^ in various nonabsorbing gases. Solid 
lines are the theoretical predictions of equation 
4.2. Modulation frequency is 50 Hz [l8l]. 
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the properties of the absorbing gases and nonabsorbing gases. However, 

all these curves exhibit a similar pattern for the PAS signal: first 

increasing, reaching a maximum value, and then decreasing. The PAS signal 

is also a function of modulation frequency. As shown in Figure 19, lower 

modulation frequency generates higher PAS signal. Since an optimum 

pressure exists for each modulation frequency, analytical detection based 

on photoacoustic spectroscopy should be performed at that pressure to 

achieve a better signal. 

As shown in the theory, the photoacoustic signal is directly propor­

tional to the amount of power absorbed. This in turn is related to the 

intensity and monochromaticity of the incident light and to the concentra­

tion of the absorbing species in the photoacoustic cell. Since lasers 

offer the most intense power to date, it is natural to employ them as 

excitation sources for PAS detection. In addition, lasers possess other 

advantages like monochromaticity, and collimation. While high monochroma­

ticity offers high specificity which is required by multicomponent 

analysis, high degree of collimation allows the exciting energy to be 

focused on a small sample volume. 

Besides the concern of signal intensity, noise level also must be 

considered in order to achieve good signal-to-noise ratio, which in turn 

determines the detectability of the PAS system. The ultimate detectable 

PAS signal is limited by noise in the transducer preamplifier and noise 

caused by Brownian motion of the molecules [l53,154]. However, the most 

serious limitation to high detectability of gaseous PAS systems to date has 

been the background signal that is due to the photoacoustic signal from 

absorption of the optical beam in the cell windows, and to a lesser degree 
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Figure 19. Photoacoustic signal as a function of modulation frequency 
for 10 torr CH. in H-. Solid lines are the theoretical 
predictions of 4.2 [tsi]. 
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from absorption of scattered radiation by the cell walls. There are 

several methods to diminish the effects of window heating* (a) using a 

differential cell design [l5l], (b) using a resonant cell [l55-157]; (c) 

increasing the cell chamber length to reduce window background signal as 

compared to the gas signal; and (d) Stark- or Zeeman-modulating either 

the laser frequency or the spectral frequency of the absorption line [l58-

160]. 

An alternative of method (d) is to wavelength-modulate the radiation 

source if a continuously tunable laser is employed. Background signal 

due to window heating is proportional to the light intensity which is 

essentially constant with the small change of wavelength. Therefore, this 

background signal is kept as a DC signal while the true photoacoustic 

signal produced by the absorbing gas is modulated by wavelength modulation. 

By use of a phase-sensitive detection device, the DC signal is rejected 

and only the true PAS signal is detected. While PAS detection with high 

power lasers certainly benefits most from wavelength modulation, the 

detection utilizing weaker power lasers as diode lasers should also profit 

from it. However, it is important in the latter case to have both 

electronic noise and acoustic noise low so that these noises would not 

dominate the window heating background signal. Otherwise, there will not 

be any significant reduction on total noise. 

In this work, photoacoustic detection technique is employed to the 

detection of NH^, an important gaseous air pollutant. Ambient acoustic 

noise and building vibration noise are minimized by an isolation design. 

Wavelength modulation is used to reduce the window-heating background 

signal. The detection limit of this PAS system is examined through the 
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B, Experimental 

The components used in this study are listed in Table 9. Some 

components, such as laser packages, cryostat, laser mounts and vacuum and 

gas transfer system overlap those used in the study of internal calibration 

and will not be repeated here. Described below are the components which 

are essential in this experiment. 

1. Photoacoustic cell and detector 

The detector used in this work for the photoacoustic signal detection 

is a Knowles Electronics BT-1759 miniature electret microphone with a 

built-in FET preamplifier. The dimensions, wiring and sensitivity curve 

of this microphone are shown in Figure 20. It has an overall response of 

10 mV/Pa, and a broad-band rms noise level of about 6.5 |iV. The frequency 

response is flat between 100 Hz and 3 KHz. By using a lock-in amplifier 

tuned to the chopping frequency, the microphone noise level (which poten­

tially represents the limit of detectivity of the system) can be reduced 

dramatically. The output impedance of this microphone is from 2000 to 6000 

ohms (3500 ohms nominal). It should be matched with the input impedance 

of the lock-in amplifier to minimize the electronic noise. 

The photoacoustic cell used in this experiment is shown in Figure 21. 

It is an acoustically nonresonant cell made of pyrex glass, with a cavity 

of 25 mm long and 10 mm in diameter, and is fitted with two KCl windows. 

The microphone was mounted to the bottom of the plug of a glass joint which 

was attached to the middle of the cell. When the plug was inserted into 
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Table 9. Experimental components for photoacoustic detection 

Component Model No. Manufacturer 

Cryostat 

Diode laser 

Power supply for 
diode supply 

Regulated DC 
power supply 

Monochromator 

Mechanical chopper 

Microphone 

Thermopile 

Microvoltmeter 

HgCdTe detector 

Lock-in amplifier A 

Lock-in amplifier B 

X-Y recorder 

Chart recorder 

Oscilloscope 

0-2-250+0-7M-H 

SDL-30 

6226B 

E-1 

7503 

BT-1759 

11650 

155 

DMSL 45 

HR-8 (type C 
Preamplifier) 

9503 

7001A 

B5117-5I 

7904 

Capacitance manometer 221 

Andonian, Waltham, MA 

Laser Analytics, Bedford, MA 

Home made 

Hewlett-Packard, Santa Clara,CA 

Perkin-Elmer, Norwalk, CT 

Rofin, Newton Upper Falls, MA 

Knowles Electronics, Franklin 
Park, IL 

Eppley Laboratory, Newport, RI 

Keithley Instruments, Cleveland, 
OH 

Infrared Associates, New 
Brunswick, NJ 

Princeton Applied Research 
Princeton, NJ 

Ortec, Oakridge, TN 

Moseley, San Diego, CA 

Houston Instrument, Austin, TX 

Tektronix, Beaverton, OR 

MKS Instruments, Cleveland, OH 



www.manaraa.com

Figure 20, The dimensions, wiring and sensitivity curve of the 
Knowles BT-1759 electret microphone. 
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Figure 21. The design of photoacoustic cell with microphone. 
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the receptacle, the microphone was then flush with the inner wall of the 

FAS cell and its position was midway between the cell ends. The cell was 

designed so that two capacitance manometers, one for low pressure and the 

other for higher pressure can be mounted simultaneously. During the 

recording of the photoacoustic spectrum, valve A was kept closed. This 

was to minimize the acoustic noise from vacuum pumps and ambient sources. 

For sound and vibration isolation, the cell was mounted on a lead block, 

surrounded by thick rubber foam and acoustical shielding board for 

acoustical shielding, and enclosed in a wooden box resting on layers of 

rubber foam and wood. 

2. Laser current supply for wavelength modulâtion of tunable diode lasers 

In the wavelength-modulated PAS detection system, it is necessary for 

the diode laser current supply to have a small AC current superimposed on a 

current ramp. In doing so, we iiqposed a small change on the applied 

current, and the wavelength of the diode lasers varied accordingly. The 

power supply used in this system is a modification of the circuit used 

in the Chapter 3. 

In the modified portion of the current supply, as shown in Figure 22, 

a small square wave is added to the voltage ramp vrtiich is the output from 

the réunp offset circuit shown in Figure 9. The heart of this circuit is a 

555 integrated circuit timer which is wired to generate a square wave with 

a frequency of 108.7 Hz. The square wave is forward to a voltage divider 

to obtain a desired voltage adjustable from 0 mV to 66 mV by a 10-ohm 

potentiometer. This adjustable square wave and the voltage ramp from the 

reunp offset circuit are thai summed by a 741 operational amplifier. The 

resulted voltage ramp which now carries a small square wave is fed into the 
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www.manaraa.com

103 

upper circuit of Figure 9 to provide current ramp to diode lasers. A 

synchronous output of 83 mV is drawn from the circuit of Figure 20 to 

provide reference input for the phase-sensitive detection device, i.e. 

lock-in amplifier in this work. 

3. Spectrophone setups 

Two spectrophone setups were used in this work. Their schematic 

diagrsuns and descriptions are given below. 

a. Spectrophone setup ̂  This setup, as shown in Figure 23, 

is used for normal photoacoustic (FAS) detection. This type of arrangement 

facilitates both PAS detection and IR detection so that both kinds of 

spectra can be taken either simultaneously or independently for comparison. 

The laser crystal and laser current supply used here are the same ones 

described in the internal calibration section. Cooling was provided by 

the same liquid helium cryostat and again a temperature of about 4 K was 

used throughout this work. Radiation from the laser collected by a KCl 

lens of 50.8 mm diameter and 63 mm focal length and focused at the center 

of the PAS cell. A mechanical light chopper operating at acoustic 

frequency was placed in front of the PAS cell to modulate the laser beam 

intensity and thus generate the acoustic signal. A Knowles Electronics 

model BT-1759 miniature microphone (sensitivity 10 mV/Pa) with a built-in 

PET preamplifier was located midway between the cell ends to detect the 

photoacoustic signal. The reference signal from the chopper and the signal 

from the detector were then analyzed by an Ortec 9503 lock-in amplifier. 

An X-Y recorder was employed to display the photoacoustic signal intensity 

(Y-axis) as a function of laser current (X-axis). Also, the radiation 
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Figure 23. Spectrophone setup I. 
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transmitted through the PAS cell was focused onto a thermopile by a NaCl 

lens of 35 mm diameter and 70 mm focal length. The IR signal generated 

by the thermopile was then measured by a micro-voltmeter as a function of 

laser current and recorded on the X-Y recorder. 

b, Spectrophone setup II The spectrophone setup II, as shown in 

Figure 24, can be used for either normal PAS detection or wavelength-

modulated PAS detection. In normal PAS detection, the mechanical chopper 

serves as the light intensity modulator and also provides the reference 

signal for lock-in amplifier. In the wavelength-modulated PAS detection, 

the wavelength modulation is provided by the current output of laser 

power supply through the square wave, which by the way of synchronous 

output also serves as the reference signal for lock-in amplifier. In this 

case, the mechanical chopping is off but the chopper is left in place to 

avoid disturbing the whole system. Radiation from the laser was focused 

at the PAS cell by the KCl lens as in the spectrophone setup I. The PAS 

sigial was again detected by the BT-1759 microphone and was displayed on 

the X-Y recorder as registered on the PAR HR-8 lock-in amplifier. But this 

time, radiation transmitted through the PAS cell was not detected by a 

thermopile. Instead, it was collected by a gold coated concave mirror of 

108 mm diameter and 550 mm focal length. A NaCl lens of 35 mm diameter 

and 70 mm focal length then focused the radiation at the entrance slit of 

an infrared monochromator operating in the double pass mode at a dispersion 

of 0,97 cm ^/mm. The laser radiation was again collected after the exit 

slit of the monochromator and focused onto a photoconductive HgCdTe 

infrared detector by a second gold coated concave mirror of.42 mm diameter 

and 6 7 mm focal length. The infrared signal was measured by a second lock-
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in amplifier (Ortec 9503) and was recorded on a chart recorder. An 

oscilloscope connected to the laser current supply was used to display 

the current waveform applied to the laser. 

C. Results and Discussion 

1. Detection of normal photoacoustic signal 

Fig^ire 25 was taken with the spectrophone setup I, and shows the 

transmitted power and normal photoacoustic signal vs. diode injection 

current for NH^ at a pressure of 598 torr. Dotted curve, a, represents 

the total output power of the diode laser with several modes emitting 

simultaneously. The relative strengths and spectral frequencies of those 

modes vary with diode injection current and temperature. Trace b shows 

the transmitted power through the gas cell, measured by thermopile and 

trace c shows the photoacoustic signal measured by microphone and lock-in 

amplifier. After comparing trace b with c, it is obvious that photo­

acoustic signal appears wherever there is an absorption. As would be 

expected from theory, an increase in absorption leads to an enhanced 

photoacoustic signal, naturally the peaks of photoacoustic signal coincide 

with the region with least transmitted power. 

Figure 26 shows the effect of total pressure on photoacoustic spectra, 

and the photoacoustic signal strength as a function of total pressure is 

shown in Figure 27. By visual inspection, it is evident that the lone peak 

on the right end of the spectrum in Figure 26 should be the best one to 

choose for analytical purposes because it not only is well-separated from 

other peaks, but also has the strongest intensity. Also clear is that even 
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Figure 25. Transmitted power (b) and normal photoacoustic signal 
(c) vs. diode injection current for 598 torr of NH . 
Also shown is laser power spectrum (a). 
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Figure 26. The effect of total pressure on photoacoustic spectra 
of NH- in air. Abscissas represent frequencies 
(arbitrary unit), ordinates represent PAS signals, 
(arbitrary unit) Partial pressure of NH- is fixed to 
4.2 torr while the total pressure is varied as follows: 
a, 4.2 torr; b, 9.5 torr; c, 14.1 torr; d, 18.8 torr; 
e, 28.6 torr; f, 41.3 torr; g, 60.4 torr; h, 88.1 torr; 
i, 167.5 torr; j, 478.6 torr. 
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Figure 27. Photoacoustic signal as a function of total pressure for NH- line 
at 872.59 cm with 4.2 torr of NH^ in air. 
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at total pressure of about 30 torr to 40 torr, peak intensity is not 

compromised while the resolution is still quite sufficient to provide 

high selectivity for multicomponent analysis. 

2. Identification of absorption lines 

The identification of seven strong photoacoustic peaks (peak number 

2 through 8), observed at injection current from 0.970 amperes to 1.221 

amperes (as shown in Figure 28), was established through two stages: (a) 

sorting out the photoacoustic peaks caused by different diode laser 

modes; (b) comparing experimental infrared spectra with literature data 

of line centers and line intensities. 

In the first stage, infrared spectra in different modes, as shown in 

Figure 29, were taken by the spectrophone setup II right after the record­

ing of Figure 28. Current applied to the diode laser at the peak centers 

was measured for spectra in both Figure 28 and 29, These current values 

obtained for the two types of spectra then were used to identify these 

peaks since peaks shown in Figure 29 must correspond to those shown in 

Figure 28 with the same values of injection current. Peak number 2 

through 8 were identified accordingly. 

In the second stage of identification, diode laser infrared spectra 

of the four modes were compared with literature data [125,175,182] which 

are shown in Table 10. Figure 30 shows an FTIR spectrum of NH^ (12 

torr) taken by a FTIR spectrometer (IBM IR/98, Bruker, Karlsruhe, West 

-1 
Germany) with resolution of 0.06 cm . The peak positions obtained by FTIR 

are also listed in Table 10. In the infrared spectra a, b, and c, mono-

chromator spectral width was only 0.2 cm ; therefore, the peaks shown 
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Figure 28. Photoacoustic_spectrum of 2 torr NH^ in 18 torr air 
around 870 cm . peak 2: 867.517 cm~l; peak 3i 867.717 
cm~^; peak 4: 867.870 cm"lj peak 5j 867.967 cm~l; 
peak 6: 868.001 cm"l; peak 7: 871.753 cm'l; peak 8: 
872.589 cm"l. 
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Figure 29. Diode laser infrared spectra of 2 torr NH^ in 18 torr air in modes around 
870 cm~l. a, mode center at 867.52 cm~^; b, mode center at 867.77 cm~lj 
c, mode center at 868.02 cm j d, mode center at 872.23 cm'l. Spectra 
a, b and c are taken with monochromator spectral width of 0.2 cm"l. 
Spectrum d is taken with that of 0.7 cm'l. Number 2 through 8 correspond 
to peak numbers in Figure 28. 
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Table 10. Line centers and line intensities of NH^ absorption around 870 cm 

Line Frequency (cm" 1) Line Intensity (cm" •2atm~l) 
a 

Peak No. Transition 
Cappellani 
and Restelli 

[125] 

Curtis 
[182] 

Taylor 
[175] 

FTIRb Cappellani 
and Restelli 

[125] 

Taylor 
[175] 

FTIRC 

2 sP(5,4) 867.5173 867.5173 867.502 867.58 0.94 0.94 6 

3 sP(5,3) 867.7177 867.7175 867.744 867.80 2.7 2.94 3 

4 sP(5,2) 867.8706 867.8825 867.923 867.95 1.6 1.76 5 

5 

6 

sP(5,l) 

sP(5,0) 

86 7.9672^ 

868.0012 
867.9799 

868.032^ 

868.069 
868.07 

1.8 

4.0 

1.91 

3.90 
1 

7 sP(3,2) 871.753 871.82 1.68 4 

8 sP(3,l) 872.589 872.66 2.54 2 

^eak numbers correspond to those in Figure 28 and 29. 

^FTIR spectrum were taken by IBM IR/98. 

*Xine intensities were not obtained but justified in the order of relative strength. 
Strongest peak is marked 1, weakest one is marked 6. Smaller number indicates strcmger peak 
intensity. 
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Figure 30. FTIR spectrum of 12 torr NH- between 860 cm~^ to 880 cm~\ Cell length = 2 cm 
resolution = 0.06 cm~l. * 
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in these modes could be identified easily by comparing mode center with 

literature values of peak positions. Spectrum d had a monochromator 

-1 _i 
spectral width of 0.7 cm and the mode center was at 872,23 cm , 

therefore peak 7 and peak 8 must have line position on opposite sides 

-1 -1 
of 872.23 cm and have a separation of about 0.7 cm . The peaks 2 

through 8 were identified accordingly as sP(5,4) at 867.571 cm 

sP(5,3) at 867.717 cm"^, sP(5,2) at 867.870 cm"^, sP(5,l) at 867.967 

cm sP(5,0) at 868.001 cm sP(3,2) at 871.753 cm ^ and sP(3,l) 

-1 -1 
at 872.589 cm . The sP(3,l) line at 872.589 cm was chosen for this 

study because of its high intensity and freedom from interference. 

3. Selection of modulation frequency 

Since both photoacoustic signal and noise are affected by modulation 

frequency, the modulation frequency, f, should be selected carefully 

to attain the best signal-to-noise ratio. 

The photoacoustic noise was studied with spectrophone setup II 

without the laser irradiation. The gas cell was filled with 48 torr of 

air. In order to avoid the mechanical vibration caused by the mechanical 

chopper, a WAVETEK Model 162 function generator (WAVETEK, San Diego, 

CA), instead of the chopper, was used to provide the reference signal for 

the lock-in amplifier. The main sources of noise in this case are ambient 

acoustic noise, ambient vibrational noise and electronic noise. The 

noise spectrum of noise vs. 1/f as shown in Figure 31, shows approximately 

a linear relationship between the two. 

Wake and Amer[l8l] have studied the effect of modulation frequency 

on photoacoustic signal. A plot of photoacoustic signal as a function 
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Figure 31. Photoacoustic noise as a function of inverse frequency. Dots represent 
experimental data. Solid line represents the best-fit line of these data. 
Slope = 0.0783, correlation coefficient = 0.9895. 
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of 1/f, derived from their study, is shown in Figure 32. It is seen 

from this figure that these functions vary with total pressure in the 

gas cell. Below about 100 Hz of modulation frequency, the signal is 

no longer a linear function of 1/f for total pressures of 50 torr and 

100 torr, but curved downward with the increase of 1/f. This implies 

that one should not use a frequency of less than 100 Hz for the photo-

acoustic detection at total pressure of 100 torr or less. One should 

notice that the figure, 100 Hz, should vary with the absorbing gas 

(CH^ in this case and NH^ in our system) and the nonabsorbing gas (H^ 

in this case and air or nitrogen in our system). When frequency of 

higher than 100 Hz is used, both signal and noise are linear function 

of 1/f, and thus the signal-to-noise ratio is a constant for all those 

frequencies. Based on the above discussion, modulation frequency of 

109 Hz was used throughout our experiments of photoacoustic detection. 

4. Wavelength-modulated photoacoustic detection 

a. Comparison of wavelength-modulated photoacoustic spectrum with 

normal photoacoustic spectrum A comparison of wavelength-modulated 

photoacoustic spectrum with normal photoacoustic spectrum is shown in 

Figure 33. Both spectra were taken by the spectrophone setup II equiped 

with PAR HR-8 lock-in amplifier. However, in the normal spectrum the 

mechanical chopper was used for intensity modulation while in the wave­

length-modulated spectrum the new current supply, described earlier 

in this chapter, was employed for the wavelength modulation. In Figure 33, 

the signal-to-noise ratio of wavelength-modulated photoacoustic signal 

was obviously better than that of normal photoacoustic signal. About a 
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Figure 32« Photoacoustic signal as a function of inverse frequency for 
10 torr of CH^ in air [181]. Triangles, dots and crosses 
represent experimental data for total pressure of 50 torr, 

100 torr and 760 torr respectively. Continuous lines are 
theoretical curves. 
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0.96 1.10 1.24 
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0.96 1.03 1.10 1.17 1.24 

CURRENT (A) 

Figure 33. Comparison of normal photoacoustic spectrum (a) with 

wavelength-modulated photoacoustic spectrum (b) for 
0.8 torr NH^ in 11 torr N^. 
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factor of 3 of improvement was obtained. If the window heating back­

ground is the major source of noise, one would expect that a much 

greater improvement could be obtained by using wavelength modulation 

approach. Since this improvement was not as great as would be expected, 

this fact indicates that the window heating background is not a serious 

problem in this system due to very low power laser used as excitation 

source. So, the major sources of noise in this wavelength-modulated 

system must be ambient acoustic noise and electronic noiâe. With band­

width of 10 Hz and time constant of 10 seconds on lock-in amplifier, 

the system noise was observed between 0.3 |iV to 0.4 jiV which was comparable 

with that obtained by Gerlach and Amer with the same type of microphone 

[l83]. This noise was experimentally verified being dominated by 

electronic noise. This noise level is considered quite high for photo-

acoustic detection and further reduction is possible. Electronic noise 

introduced by microphone can be reduced by reducing the bandwidth of 

the microphone response frequency with a lock-in amplifier since the 

microphone noise is proportional to the square root of the bandwidth. 

Also, since the built-in FET preamplifier is the principle contributor 

to the microphone noise, the use of a high quality FET amplifier, which 

is available with intrinsic noise level of 10 nV/Hz , should bring down 

the microphone noise level significantly [l62]. Additional electronic 

noise introduced by subsequent amplification and signal processing, 

cable pick-up, etc. can be reduced by careful electronic design. Dewey 

[I62] had measured values of 28 nV from these sources and estimated that 

it can be reduced to 17 nV, yielding a total electronic noise of about 20 

to 30 nV. This figure is more than 10 times better than the observed 
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noise in our system. 

b. The effect of modulation amplitude on wavelength-modulated 

photoacoustic signal The wavelength-modulated photoacoustic signal 

is a function of modulation amplitude, as shown in Figure 34 and 35. 

With the increased modulation amplitude, the PAS signal first increased, 

reached a maximum (optimum point) then decreased. The modulation 

amplitude vrtiich corresponds to the maximum signal at certain total 

pressure is defined as the optimum modulation amplitude. The position 

of optimum point varies with the peak linewidth which is determined 

by both the pressure of absorbing gas and the pressure of nonabsorbing 

gas. In Figure 35, the four optimum points shifted from low modulation 

cimplitude to higher modulation amplitude with the increase of total 

pressure, i.e. the increase of linewidth. In Figure 34, the linewidth 

was so narrow that even a modulation amplitude of only 0.2 mV was too 

great to obtain optimum point. 

c. The effect of total pressure on wavelength-modulated photo­

acoustic signal Experimentally measured wavelength-modulated photo­

acoustic signals as functions of total pressure with modulation amplitude 

fixed at 2 mV and 0.3 mV respectively are shown in Figure 36. A similar 

plot but using optimum modulation amplitude at each total pressure is 

shown in Figure 37. All these plots have maximum signal around total 

pressure of 20 torr. Therefore, to obtain the best signal-to-noise ratio, 

one should choose a total pressure of about 20 torr and a modulation 

amplitude which produces maximum signal at this pressure. This condition 

of low total pressure would also be ideal for multicomponent analysis 

because high selectivity can be achieved through the high resolution 
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Figure 34. The effect of modulation amplitude on wavelength-
modulated photoacoustic signal of NH absorption line 
at 872.59 cm"^ with 0.8 torr of NH. in 9 torr of 
nitrogen. 
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35. The effect of modulation amplitude on wavelength-modul 
photoacoustic signal of NH^ line at 872.59 cm ^ with 1 
torr of in various nitrogen pressure: A, 16.5 tor 

B, 28.1 torr; C, 40.1 torr; D, 51.5 torr. 
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Figure 36. Wavelength-modulated photoacoustic signal vs. total pressure for 1.6 torr 

of NH in nitrogen. Curve A has modulation amplitude fixed at 2 mV and B 
has that fixed at 0.3 mV. Modulation frequency is 109 Hz. 



www.manaraa.com

80 90 20 30 40 50 60 

Total Pressure (torr) 

Figure 37. Wavelength-modulated photoacoustic signal vs. total pressure for 1.6 torr 

of NH^ in nitrogen with optimum modulation amplitude at each pressure. 
Modulation frequency is 109 Hz. 
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at low pressure. 

d. The effect of time constant on photoacoustic detection The 

signal-to-noise ratio (S/N) of the PAS detection could be improved by 

setting a longer time constant on lock-in amplifier. For example, if 

noise fluctuation cycle is within 3 second, then a 10-second time 

constant should smooth out the noise. However, before applying this to 

PAS detection, one should be certain that the scan rate of laser frequency 

over the absorption peak should be sufficiently slow so that the response 

of lock-in amplifier can follow the peak shape well. Otherwise, signal 

would be largely cut off at the same time when noise is cut off, and 

therefore, S/N does not benefit from the long time constant. 

Normal PAS detection of 1.3 torr NH^ in 40 torr nitrogen was 

performed with time constant setting of 1-second, 3-second and 10-second, 

as shown in Figure 38. The S/N was measured for each case and was 

found to have a factor of 3 of improvement for 10-second time constant over 

1-second time constant. The S/N improvement on wavelength-modulated 

PAS detection was studied similarly and a similar factor of 3 to 4 of 

improvement was obtained. Further increase in the time constant would 

cause operational difficulty because of the very slow response. Therefore, 

it is decided to use time constant of 10-second in the study of detection 

limit of NHg. 

e. Detection limit of NH_ The detection limit of our wave-

length-modulated PAS system constructed in this work was examined by 

measuring PAS signal of 97 ppm NH^ in nitrogen. Based on the studies 

of the effects of modulation amplitude, total pressure and lock-in 

amplifier time constant on wavelength-modulated PAS signal discussed 
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Figure 38. The effect of time constant on signal-to-noise ratio of photoacoustic 
detection for NH^ line at 872.589 cm~^. Gas sample is 1.3 torr of NH^ 
in 40 torr of nitrogen, a, time constant = 1 second; b, time 
constant = 3 second; c, time constant = 10 second. 
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above, a total gas pressure of 20 torr and a time constant of 10-

second were chosen, in addition, the modulation amplitude was adjusted 

to produce maximum signal. 

The wavelength-modulated PAS signal under these experimental 

conditions is shown in Figure 39. The detection limit was estimated 

to be 25 ppm at S/N = 1 with estimated laser power of 84 (iW in this 

mode. This is better than the detection limit obtained by Vemsteenkiste 

et al, [152] for carbon monoxide using a line with similar absorption 

coefficient with a laser power of 96 |j,W. 

The 97 ppm gas mixture was premixed in a stainless steel chamber 

of about 5 liters. A period of two hours was allowed for the adsorption 

of NHg onto the chamber walls before nitrogen was introduced into the 

chamber. Since adsorption is a function of partial pressure of NH^, the 

introduction of nitrogen should not cause desorption of NH^ from the 

chamber walls, thus the concentration obtained from the mixing process 

is reliable. However, when the 97 ppm NH^ was introduced into the PAS 

cell, some of the NH^ must have adsorbed onto the cell walls, windows 

etc., so the true NH^ concentration in the cell must be less than 97 ppm. 

Therefore, the detection limit obtained above was the upper limit. 

The detection limit obtained with this system is not sufficient 

to measure NH^ concentration near pollution source, which is only a 

few ppm. However, there are some potential ways to improve this 

detection limit. First of all, the sigial can be enhanced with the use 

of higher pcwer laser since the photoacoustic sigpal increases propor­

tionally as the power of the incident beam increases. The maximum 

power achieved by a diode laser was 50 mW in single mode [67] which is 
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Figure 39. Wavelength-modulated photoacoustic signal of 97 ppm 
NHg in nitrogen. See text for experimental conditions. 
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about 600 times of the single mode power of our diode laser. Thus, the 

signal should be improved 600 times if such a diode laser is commercially 

available in the future. The window heating background is eliminated 

by wavelength-modulation technique, so the S/K is expected to be increased 

to the same extent as the signal does, i.e. a detection limit of 0.04 ppm 

can be achieved. Since window heating background is proportional to the 

laser power, higher power laser would actually benefit more from wavelength 

modulation technique. The diode laser is well suited for wavelength-

modulation because its wavelength is controlled by injection current which 

in turn can be controlled easily by a circuit. Another type of tunable 

infrared laser suitable for wavelength-modulation is spin-flip Raman laser 

whose wavelength is controlled by the applied magnetic field. This type 

of lasers can be made with output power (1 watt, see Table 1) higher 

than that of diode lasers, therefore, a detection limit of 2 ppb can 

be expected. 

However, the sensitivity of PAS system can not be improved 

indefinitely by simply going into more powerful lasers since at sufficiently 

high laser intensities (IQ) optical saturation effect occurs. In this 

case, the signal ceases to increase with increasing IQ at high intensities, 

and eventually begins to decrease as 1/1^ at very high intensities [l84]. 

Thus higher detectability with PAS must be achieved by reduction in the 

noise level rather than by simply using ever more powerful laser sources. 

To reduce the noise level, care irust be taken to ensure mechanical and 

acoustical isolation of the detector. In addition, a better quality 
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microphone with lower broadband noise is necessary. Carefully desipied 

electronics will further reduce the electronic noise introduced by 

amplification and signal processing, cable pick-up and other sources. An 

electronic noise of 20 nV was estimated to be achievable [l62]. This is 

an improvement of more than 10 times better than the noise level in our 

system. In addition to the use of higher power laser, signal can be 

enhanced by the proper design of photoacoustic cell. According to Roessler 

and Foxvog [180], PAS signal is inversely proportional to cell volume, 

therefore, reducing the cell volume would enhance the signal. Other 

potential cell designs which can improve the signal is a multipass cell 

[l50,160] in which the incident laser beam is passed back and forth many 

times, and a resonant cell which enhance signal by accumulating acoustic 

energy in a standing wave. However, both cell desigis are more complicated 

than the simple cell used in this work. 

D. Conclusion 

In this work, we have performed the detection of NH^ by wavelength-

modulated photoacoustic detection technique. A detection limit of 25 ppm 

was obtained. Although this detection limit achievable by our current 

system is not really sufficient for the NH^ analysis in air pollution, it 

is readily improvable to the sub-ppm level. For the detection of other 

gaseous air pollutants with higher concentration, such as in source 

monitoring of SOg, CO, N^O and NO, and CO monitoring in urban area, its 

sensitivity is still sufficient. The wavelength-modulated PAS detection 

system is especially suitable for point sampling and multicomponent 
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analysis since optimum signal occurs at low pressure. A flow cell develop­

ing by this group can be used in conjunction with this wavelength-modulated 

PAS system for in situ monitoring of air pollutants. The noise from 

turbulance introduced by the flowing of gas in the flow cell also can be 

reduced by the wavelength-modulation technique. And the flow cell system 

can be automated easily to perform essentially real-time analysis. For 

molecules that interact with cell or with each other, this system avoids 

potential errors produced by the interaction. Further, because of the small 

size of the diode lasers, the system can be made contact and movable for 

field study. Along with the capability of real-time analysis, the system 

is highly applicable to the air pollution study. 
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V. CONCLUSION 

In this dissertation» we have studied the applications of tunable 

infrared diode lasers to the analysis of gaseous air pollutants in two 

ways. First, a simple and reliable internal calibration method vas employed 

to determine the infrared linewidths and line positions with great 

accuracy. Since these line parameters are the basis of air pollution 

analysis, the demonstrated accuracy is therefore very important. The 

calibration method is very simple and can be easily performed on a daily 

basis. If a minicomputer is interfaced to the laser spectrometer, the 

calibration can be done in essentially real time. Second, the detectability 

of a wavelength-modulated photoacoustic detection system was examined 

through the detection of NH^, an important gaseous air pollutant. Because 

of the low power of diode lasers, the achievement of good signal-to-noise 

ratio in photoacoustic detection system must depend on the reduction of 

noise level. Wavelength modulation provides a way to significantly reduce 

the background signal due to window heating, which is a principle source 

of noise. Even though the detection limit of this system is not yet 

satisfactory, it is expected to be improvable down to sub-ppm level by 

either using a higher power laser or reducing the electronic noise, or both. 

Optimizing the design of the PAS cell further will also improve the 

detectability. The compactness of the diode laser system allows itself to 

be easily adapted to field study of air pollutants. In conjunction with 

a flow cell and having the system automated, the wavelength-modulated PAS 

detection system can perform real-time air pollution analysis. 
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VIII. APPENDIX A: OPERATIONAL PROCEDURES 

FOR EXPERIMENTAL APPARATUS 
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A. Internal Calibration 

Cooling the liquid He chamber to near liquid N2 temperatures. 
(Although this cooling step is not absolutely necessary, the extra 
liquid He required to cool the liquid He chamber from room temper­
ature is considerable and liquid He is expensive. This portion of 
the procedure should be done about twelve hours prior to the liquid 
He transfer operation.) 

Step 1. Make sure that the cryostat is being pumped by the liquid 
nitrogen trapped oil diffusion pump. 

Step 2. Fill the liquid N- chamber with liquid N_. Stopper the 
inlet tube of the liquid chamber. 

Step 3. Run a tube from the liquid N- chamber exit tube to the 
entrance tube of the liquid He chamber. 

Step 4. Place bunsen valve on the liquid He chamber exit hole. 

Step 5. Place a bunsen valve on the He gas boil-off tube. 

Semiconductor diode laser operational procedure. 

Step 1. Turn on the lock-in amplifier for warm-up. 

Step 2. Turn on the X-Y recorder for warm-up. 

Step 3. Attach vacuum line hose to the He gas boil-off tube. 

Step 4. Place the shorter end of the liquid He transfer tube into 
the liquid He chamber. Place a bunsen valve on the liquid 

exit tube. 

Step 5. Attach tubing from the He gas cylinder to the other end of 
the transfer tube. 

Step 6. Partially evacuate the He chamber being careful not to 
collapse the bunsen valve and letting air into the chamber. 

Step 7. Fill the chamber with He gas. He gas will rush out the 
bunsen valve when the chamber is full of gas. 

Step 8. Repeat steps 7 and 8 two more times. 

Step 9. Remove the bunsen valve and the vacuum line hose, attach 
the He return lines, and open the He return valve. 
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Step 10. Turn on the He gas cylinder momentarily and verify that 
He is passing through the He return line by observing 
the ping-pong ball movement in the check valve. 

Step 11. Remove the rubber hose attached to the He cylinder from 
the bottom of the transfer tube and place the hose over 
the pressurizing tube on the side of the transfer tube. 

Step 12. Place the long end of the He transfer tube into the 
liquid He dewar, being careful that the bottom of the 
transfer tube rests about an inch off the bottom and being 
careful not to freeze the rubber connecting tube before 
the transfer tube is in place. 

Step 13. Pressurize the He dewar to about six pounds to drive the 
liquid He through the transfer tube into the cryostat. 

Step 14. Fill the cryostat. When liquid He first enters the cryo­
stat, all of the He will boil off until the cryostat becomes 
cold enough to retain liquid He. This change is marked 
by a large rush of He gas in the return line that gradually 
decreases. When the liquid He level nears the top of the 
cryostat, the rush of the He gas will again rise and this 
change can be used to ascertain when the cryostat is full. 

Step 15. Quickly remove the transfer tube from both the cryostat 
and the dewar simultaneously and stopper the He chamber 
entrance tube. 

Step 16. Measure and record the liquid He level in the dewar. 

Step 17. Fill the detector with liquid and turn on the detector. 

Step 18. Turn on the power to the tuning fork light chopper. 

Step 19. Open the spectrometer slits to about 9000|i and set the 
monochromator reading to the region where the laser is 
expected to output. 

Step 20. Remove the plastic covers from the optics and windows in 
the optical path. 

Step 21. Connect HP regulated dc power supply to the current simply. 
Care must be taken to ascertain the right polarity 
connection. Turn on HP power supply. Set current to a 
proper value between 1.5 amp and 2 amp. Set voltage to 
zero. 

Step 22. Turn on the current supply, voltage offset, and voltage 
ramp. Turn the short switch to the short position, and 
verify that current is flowing through the short switch 
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by observing the voltmeter attached to the current monitor 
terminal. (1 volt is equivalent to 1 amp of current.) 

Step 23. With the short switch still in the short position and 
the internal-external switch in the internal position, 
connect the laser contacts to the power supply. 

Step 24. Operate the internal-external switch to external, operate 
the short switch to open, slowly turn up the voltage of 
HP power supply to 20 V, and adjust the dc offset knob 
until the desired current is flowing through the laser. 

Step 25. Fine tune the optics, the monochromator setting, and the 
gas cell to maximize the signal as displayed on the lock-
in amplifier panel meter. Since signal can usually be 
seen, fine tuning is all that is needed unless some 
components in the optical path has been moved. In this 
case, it might require the realignment of the system. 

Step 26. Decrease slit size to a value which will keep different 
modes from coming through the spectrometer at the same 
time (200^). As the slits are changed further fine 
tuning may be necessary. 

Step 27. Adjust the voltage ramp to the desired range for current 
scanning the laser. 

Step 28. Adjust the X-Y plotter to have its minima and maxima 
correspond to the minimum and maximum of the voltage 
ramp and the minimum and maximum of the lock-in amplifier 
output. 

Step 29. Turn on the A/D converter and the paper tape punch. 

Step 30. Operate the rear switches on the A/D converter to 215 and 
operate the reset switch to ON. Allow about three feet 
of paper tape to be punched with the ASCII 215 for leader 
tape and then operate the reset switch to reset. 

Step 31. Operate the rear switches to data. 

Step 32. One is now ready to make an experimental run. Introduce 
the gas sample of interest into the gas cell, start the 
voltage ramp on the laser power supply, and operate the 
reset switch on the A/D converter to ON. 

Step 33. At the end of an experimental run, block the light to 
generate a base line, operate the reset switch to reset to 
halt paper tape punching, operate the rear switches to 
215, start the paper tape punch (reset switch to ON), 
generate 4 to 5 215s, press the M button and allow 4 to 5 
Ms to be generated, and release the M button and allow 
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4 to 5 more 215s to be generated. Halt the paper tape 
punch and operate the rear switches to data. 

Step 34. One is now ready for the next experimental run. 

3, Shutdown procedure. 

Step 1. When the liquid He is out or when no more runs are planned, 
slowly turn down the voltage of HP power supply to zero, 
operate the short switch to short and operate the internal-
external switch on the power supply to internal. 

Step 2. Disconnect the laser from the power supply. 

Step 3. . With the paper tape punch off, switch the rear switch on 
the A/D converter to 215, turn the paper tape punch ON, 
generate A or 5 215s, press the "Control D" button to 
generate 4 or 5 "Control Ds," release the Control D 
button and allow about three feet of trailer tape to be 
generated. 

Step 4. Turn off all devices (order is not important) and cover the 
optics. 

Step 5. Rewind the paper tape on the takeup reel so that the 
trailer tape is on the inside and the leader tape on the 
outside. 
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B. Wavelength-modulated PAS System 

Cool the liquid He chamber to near liquid Ng temperature as in (A). 

Semiconductor diode laser operational procedure. 

Step 1 through step 17 are the same as in (A). 

Step 18. Remove the plastic covers from the optics and windows in 
the optical path. 

Step 19. Connect the square wave generating circuit to the current 
supply. Connect HP power supply to the current supply. 
Care must be taken to ascertain the right polarity con­
nection. Turn on HP power supply. Set current to a 
proper value between 1.5 amp and 2 amp. Set voltage to 
zero. 

Step 20. Connect the microphone to its power supply. Turn on the 
current supply, square wave generator voltage offset, 
and voltage ramp. Turn the short switch to the short 
position, and verify that current is flowing through the 
short switch as in step 22 of (A). 

Step 21. With square wave generator off, short switch in the short 
position, internal-external switch in the internal position, 
zero voltage and proper current setting on the HP power 
supply, connect the laser contacts to the power supply. 

Step 22. Operate the internal-external switch to external, operate 
the short switch to open, turn on the square wave, slowly 
turn up the voltage on HP power supply to 20 V and adjust 
the dc offset knob until the desired current is flowing 
through the laser. 

Step 23. Fine tune the optics and the gas cell to maximize the 
signal as displayed on the lock-in amplifier panel meter. 
Since signal can usually be seen, fine tuning is all 
that is needed unless some components in the optical path 
has been moved. In this case, it might require the realign­
ment of the system. 

Step 24. Adjust the voltage ramp to the desired range for current 
scanning the laser. 

Step 25. Adjust the amplitude of the square wave to obtain the 
maximum signal. 
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Step 26. Adjust the X-Y recorder to have its minima and maxima 
correspond to the minimum and maximum of the voltage 
ramp and the minimum and maximum of the lock-in 
amplifier output. 

3. Shutdown procedure. 

Step 1. When the liquid He is out or when no more runs are 
planned turn the square wave amplitude to zero, operate 
the short switch to short and operate the internal-
external switch on the power supply to internal. 

Step 2. Disconnect the laser from the power supply. 

Step 3. Turn off all the devices and cover the optics. 
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APPENDIX B: COMPUTER PROGRAMS 
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This Appendix contains descriptions and listings of computer 

programs used in the internal calibration method. 

A. Program I» Paper Tape Reading Program 

This program reads the numbers, which have been punched on paper 

tape during the experimental run off the paper tape and punches thoses 

numbers on computer cards. The A/D converter is a twelve bit binary 

converter and the paper tape reader at the Iowa State University 

Computation Center is designed to read in seven bit ASCII code. Because 

three of the seven bits must be set in a particular fashion to signify 

that the other four bits are information bits, the twelve binary bits 

are divided into three groups of four bits when punched on the paper 

tape. Each group of three units of information are separated by an 

ASCII 215 which is a return character. The control cards at the end of 

the program signify that a 215 is the end of a "card image." Each group 

of four bits represents sixteen different possible units of information 

although only ten such units represent the numbers zero through nine. 

For this reason, the program reads the tape in A format and converts 

the alphanumeric information to an equivalent number zero through fifteen. 

The first value read is from the four most significant bits and is 

therefore multiplied by 16^, the second value is from the next four 

significant bits and is multiplied by 16, and the third value, which 

is from the least significant bits, is taken as is and all three are 

then added together. Eight values at a time generated in this manner 

are then punched on computer cards. The program is always checking for 

the letter "M" in the alphanumeric values read. This "M" marks the end 
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of a particular run and the program prints the number of values which 

have been generated since the previous run on a separate card. Next, 

eighty "+'s" are printed on a card to facilitate manual separation of 

the entire deck into separate runs. An ASCII "control D" indicates the 

end of information on the paper tape. Four runs at a time are then 

placed on a Simplotter generated graph to help determine base lines, 

beginnings and endings of peaks, etc. for the next program vAich deter­

mines experimental parameters. The paper tape reading program follows. 



www.manaraa.com

157 

at 
X 
«Q 

a. 
CO 

c 

(C 

a. 
o 
& 

(W 
•5 

S > 
m « 
s • 
« 2 
• «n 
«I a 
c 
or 
4 o 
u c 

Z 
oc c 
4 w 
a. -J 
ID (D 
O c 

% 
z 

« 
a 
lu 
to 
m 
_( 
C 
> 

oc 
c 
Ot 
Ul 
a. 
« 

a = 
o. o 
c •> 
_» >-
(à. w 
• 
Z 
(8 O 
a c 

9 
CB 
a 
M 
_* 
# 
oc 

en 
• 

c 
> % 
• CO 

X M 
-to O 

^ »# m 
t9 O ar »-
-1 m «M M 
»- »- » z 
< «-t — 3 
u z # « 
• 3 C C « 
3 m, ts _1 
u ̂ • o Z 
z (C z • 3 
w ta. c IL z 
• • «-» « 
a. s a —> •V « 
0) lu Ui o % -s. 
«-* c. u: - + s 
o tu % « 
>ae « IT 

S Z — <& m 
% c » k' «  ̂c (V 
2. m •. _< C e« ̂  -v 

»- #z & 
-t K» N tr iK. % & (P 
• M ̂  C M C  (V « IT 

u »-
Ul z 
X 1-4 
w IE 

O. 
« 

s >-
10 W 

•V. -V •V 

z 3 
3 IW 

« 
S 

C O 
c *-

CL 
O 
LI 

#- « 
2 U 
(0 O 
>• 
W 
•s. 
•X 

IT VU TU O 
i<n M • 
® •- _y lu 
s (O or z 
« X • «— 

# J «m ̂  
U X RVI • 
• * » 
Z &r IR M 
<n •« w 
c • -M. 

-i X •« 
u a: 2 

o Ui •-
c « w 

-I • u 
 ̂w lu 

ni • u -« 
 ̂Cl  ̂lu 
3 u a. 
M o «A 

& t 
S M 
4 «D 
• U 

U a 
m * 
Z -» 
>/} F 
C S 

£ 
>— 

C _l 
C m 

a 
lU 
w 

s N 
s 
u. c 
y > 
s 

w w n» 
>- (B  ̂̂  

QL « w w 

3, <C 
•S  ̂
& •* 
'M 

« AJ — M 
Z X « 
i-« z <K 

C tu 
w »— 
09 U 
Z •« 
W oe 
r •« 
 ̂Z 

c w 

«n u. 

e •-
o -
(S 
z 

z •<« 
 ̂I 

(O u 
> 
00 

c a 
(9 -

NI M 9 IR 
M • • • 

m 

» 
*" tu « s •• 

<j  ̂w 4 
M Z  ̂M » 
« LU M* $ M *« 
a f _ i s s ® w w * - i i  
lU  ̂  ̂̂  ̂  ̂  m, 
O >  ̂̂   ̂  ̂ AT 
W*» — mimzT z ***# -
»>3WWW(K Z * (VNI^OIN» 
ZO**XCCC«'^«^"^ 
•-»iu»-»«"««-«iL.iki<u*a*»"7"»"» 

«< Al m 
M (M M 
M M M 

-A h-
W * 
»-« <"* 
•« r-
* e 
m m 

« 9 
N M 

« » 
9 9 
IV m 



www.manaraa.com

158 

K 
* 

s 

s 

« 

& 

« m « tf> 

S 
m 

& 
M # 

S 
fu 

m "3 » 
• 

c 

o « 
o 

s 
w % #V # 
^ £ »* s 

# % X « 
 ̂ * W C % • 

« e r̂  
w 44J e 
« . # • # # « m 

% * » »-
ir » z 

m ^ m M # lU ^ # % 
w  ̂  ̂ « % % % 
^ ^ fV K> rv >-

 ̂oc w r z  ̂
m o X V M  ̂2 2 «u V »« 
# .  «  ̂  w ̂   ̂2 IV 7 H» w 
o » >4  ̂ <V •- 2 « Al 
2  2 * *  »m Z «w j( w % 

W % # . # # w % ••  ̂ •• z 
• # #" *? w « A. A» (V m* m V % 
 ̂e  ̂-f •J m £ Ai « «V rv * 

«> 441 * • ̂  ̂  3 m  ̂ A# m # z 
mé V# V# ^ 
• 

# 
IW  ̂ ® •" 
Al « « (W 
 ̂̂  ̂   ̂

 ̂̂  ® W 

Z z 
% % 

er 
s 
s 
m » »"* !•» • Y» • •— 
 ̂̂  M » ̂  ̂  #U #o  ̂Z 

•  « M V f U W W W Z l l t  

« W M A L O ^ W W W M Z  
»- 3 
Z Z 

M I f. 3  ̂̂  
A  * » * # - # &  

% w Z W 

Z c 
% o 

 ̂z taJ IL U. là. Ik 
M % * M W «-# »;* 

« 
X 

s ̂  
•  ̂
K z 
z o 
% u 

z w u 

#*. z 
w % 
U1 • 

 ̂9T • 
z (a » 
X _* * 

M AT 
•• Al Al 

X Z la. « • 
Z % W W «» 

«• 

« 



www.manaraa.com

159 

m m 
•*». •v 
-« m 

X r 
#) •> 

s 
s 

z 
% 

— m 

z 
% 

>- s 

CM Z 
»- * 
Z » 
* • 
w. # 
M C 
Z w 
o. • 

« 
z 
% 

z M 
3 FW « 

« Z »- •V 
*W «M Z »-

 ̂% z 
 ̂% 

n» «v Al  ̂
» r\i Ai 09 

h. Al Al z 
At * " & 

ac t- »-. w w a 
P»C9Z»K.ZLUUF(0 
O-»VOX»-I-^A. 
04LK0%K»AC4MZ 
(•OI-TOMX SOMIÂI 

At 
« 

• F 
A» Al 

« » 
• 

« U1 toi 
y. M 
BJ *•* toJ 
W C 
* JT toi 
a -1 C m 

z » O toi 
w « O H-
z » z toi 

-t 
• « • toi 
a -1 a c 
•: u « 
•>4 toi M o 
a ar c o 
* ̂  z 
z « X 
CJ 9> CO m 
*- X •M IL 
K > e « 
U m h- • 
09 r Z •- c 
« II. z 

u a z z 
 ̂w u 3 O 

z a; Z 
3 «-" w ce 
» # # X o 

= C OL 2 <0 
O! U UJ w • 
»A C M 
« »»- M 
W  ̂C tr Z 
y j «< m 
« ir a tr « 
z — » m S Z  ̂
« »i- to. 4 #1 -< 
o s o ta> * «• « 

m _f «w u • w 
c & • M z W 
c « r Z X •> » 

«u M Ifc o X 
«* S toi a. C oc 
» <& >r »-
S « tot • o w 
to. «-• u o toi o « 
« • S toJ C u 
v« Ui ̂  % < 
H' u ̂  toi a. ## ^ 

to. 4 _l -1 
• a. O. -i •J #) 

o W £ ## 

e « •> It aft 
 ̂'V •N. •V 

V  ̂X. •V  ̂V  ̂



www.manaraa.com

160 

B. Analytical Parameters Determining Programs 

1, Program 11(A); For peaks with negligible pressure broadening effect 

This program is used for the determinaticm of analytical parameters 

of experimental absorption peak at pressures that pressure broadening 

is negligible. It reads into memory all the experimental points, one 

run at a time, from the cards generated from the paper tape by the paper 

tape reading program. An average baseline for dark current is determined, 

and the points chosen by the programmer minus the points in the trans­

mission peaks are fitted to a fourth degree polynomial to determine the 

100% transmission value at each point in the transmission peak. 

Transmitted intensity, I, (in transmission unit) at each point in the 

transmission peak is then determined. The transmission at each point 

in the peak is then converted to an absorption value. Using programmer 

provided data for the analytical parameters, a theoretical absorption 

value is obtained at each point in the peak, and the difference between 

this value and the experimental value is squared and the squares are 

summed over all points in the peak. This procedure is followed for a 

range of values determined by the programmer for each analytical para­

meter, and the set of parameters which gives the smallest sum of the 

squares value is recorded. This parameter set is then used in the program 

III to generate and plot the theoretical peak. 

The graphs which were produced by the paper tape reading program 

aid in choosing points for the baseline determination, beginning and 
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half-widths at half maximum. 
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and starting values for line centers and 

The program follows. 
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C THIS PROGRAM 18 USED TO FINO OUT OOPPLFR WIDTH, 
C IT USES VOIGT PROFILF, WITH VARIED DOPPLER WIDTH AND FIXED 
C LORENTZIAN WIDTH, TO FIND THÇ BEST FITTING FOR THE EXPERIMENTAL 
C PEAKS. IT ALSO CALCULATES AREA, CENTER FREQUENCY, ABSORPTION, AND 
C LINE WIDTH, 

PROGRAM MAiNfINPUT,OUTPUT,TAPE5"INPUT,TAPE6"0UTPUT) 
INTEGER 8AMPLE(5),0ATA(«5),0ATE(5Î 
DIMENSION AK(|mma),AY(loa*),Y(lPm0),IPKMTN(6),IPKMAX(6),W(15*0) 
DIMENSION TRANSY(g*P1,SERROR(2m,?0,20),CNTR(6),HALFW(6) 
DIMENSION ALFAf6),nLTAf6),DLTW(6),nLTF(6) 
DOUBLEPRECISION 0(5) 

C IDTSTSmNO OF DATA SETS. 
C ITOT •  TOTAL »J0 OF POINTS, 
C IRMIN •  STARTING POINT FOR HASE. 
C IHMAX m END POINT OF *ASE. 
C NUMPKS m NUMHER OF PEAKS, 
C LOW B STARTING POINT FOR POLYNOMIAL FIT, 
C IHIGH •  END POINT FOR THE FIT, 
C LOOPN 1,2 & 3 m NUMBER Of 00 LOOPS OF PEAK, CENTER POSITION AND 
C HALFWIOTH IN REST FIT DETERMINATION OF THE 
C ABSORPTION EQUATION, 
C IPKMIN(T) •  STARTING POINT OF PEAK I ,  
C IPKMAK(I) •  ENP POINT OF PEAK I ,  
C CNTR(I) •  VISUAL GUESS FOR ABS CENTER OF PEAK I ,  
C HALFW(I) •  VISUAL GUESS FOR HALFWIDTH AT HALF MAX OF PEAK I(GAUSSIAN) 
C ALFA(I)  •  LORFMTZTAN WIDTH 
C DLTA(I) m INCREMENTS OF PEAK I  IN THE BEST FIT OF ABS EQUATION, 
C ( IN ABS TRANSMITTANCE) 
C OLTW(I) •  INCREMENTS OF HALFWIOTH AT HALF MAX IN THE BEST FIT OF 
C APS EOUATIOMdN PERCENT OF TRIAL WIDTH), 
C DLTF(I)  •  INCREMENTS OF POSITION CHANGE OF PEAK I  CENTER, 
C ( IN APS HORIZONTAL UNITS) 

REAO(S,l ininTSTS 
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« àV(KNT8)»V(n 
IF (NUMPKS .F.O,n 60 TO h 

C 
C rx,V) POINTS BETWEEN ALL PEAKS 

00 3 I"2,NUMPKS 
I I" I -1 
MAMmIPKMAXfIT) 
HINsIPKMINfI) 
00 S J#MAX,MIN 
KNT2"KNT2+1 
AX(KNT2)«J 

9 AY(KNT2)«Y(J) 
J CONTINUE 

C 
C (X,Y) POINTS FROM LAST PEAK TO END 

6 MAK«IPKMAX(NUMPKS) 
00 7 lalHIGHA,IHIGH 
KNT2"KNT2+I 
A*(KNT2)#I 

T AV(KNT2)"Y(I)  
C 
C WEIGHTING FACTOR 

no a I#1,KNT2 
a w(i)«i .  

c 
C polynomial coff determination 

CALLOPL9PA(*,KNT2,A*,AY,W,O,A,0) 
WRITE(6,555)(0(11,I"*,3) 

C 
00 9 IB1,NUMPKS 
OLTM(nanLTM(IWHAlFW(T)/ l«ie. 
MINPK*IPKM1N(1) 
MA%PK#IPKMA*(1) 

2: 
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KNT3"# 

TRANSMITTANCE POINTS CALC FROM ENVELOPE AND BASE 
PEAKal,  
00 10 JI#MINPK,MA%PK 
RILJaJ 
KNT3"KNT3*l 
TEMPY«0(t)  
DO 11 Kg,S 
L-K-1 

11 TEMPY#TEMPY+0(K)#R;iJ*#L 
TRANSV(KNT3)«(VfJ)-BASE)/(TEMPY-BASE) 
IF (TRANSY(|fNT3),GT,PEAK) GO TO 10 
PEAKbTRANSY(KNT3) 

10 CONTINUE 
WPITE(6,e66)I 
WRITE (6,444)(TRANSY(J),Jb1,KNT3) 

CALC OF TRUE AREA UNDER EXPT PEAK 
AREA«e, 
KNT*"0 
HAXPKIbHAVPK-1 
00 12 J#MINPK,MAXPK1 
KNT*"KNTa+l 
KNT5"KNT4+1 

12 AREA«AREA+(ALOG10(l . /TRAN@Y(KNT4))+ALOGl*( l . /TRANSY(KNT5)))/2, 
WRITE(6,333);,AREA,CNTRfI),HALFW(I),ALFA(I) ,0LTA(I) ,DLTW(I),0LTF(I 

1 )  

LEAST SQUARES FOR A SERIES OF AREAS, HALFNIOTHS, AND FREO CENTERS 
WL«ALFA(I) 
HLFLPI » LOOPNl/2 
HLFLP2 •  L00PN2/? 
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12S FO*MAT(|*, 'MIN PEAK , ' ,F10.5,2*, 'M%N FREO CENTR •»»F10,5,2*,<HIN H 
JALFWIOTH , ' ,F|0 , S )  

222 FORMAT(8F1W.0) 
353 F0RMAT(1X, 'PEAK NO',15,2%,'CENTER AREA •• ,F10,5,2<, 'CENTER FREQ 

; ,F*m.S,2X, 'CENTER HLF WOTH " ' ,Fim,5,/ ,*X, 'ALFA " ' ,Fim,5,2X,*PE 
2AK INC " ' ,F10,5,2X, 'WIDTH INC • ' ,F10,5,2X, 'FREQ INC-,F1«,5) 

«44 FORMATC ' ,a(|PE14.6,2X)) 
555 FORMAT(lX, 'POLYNOMIAL COEFFS ARE',1X,5(1PE14.6,2X)//)  
666 FORMATC*X, 'ADJUSTED TRANSMITTANCE FOR PEAK NO',15) 
777  FORHAT(' t ' )  
S«8 FORMAT('0' ,3I3) 
999 F0*MAT(1X, 'PEAK RUN •  ' ,15,2X, 'FREO RUN « ' ,14) 

1951 CONTINUE 
STOP 
ENO 
SUBROUTINE VOIGT (ML« WO,VZ,V,U,PEAK) 
AaML/MO 
E2"AL0q(2.) 
ETA,.099 
EL«1.-ETA#E2 
EL«EL#EL+4.#E2/A/A 
EL«1,+ETA*E2*S0RTIEL) 
EL"2./EL 
BETAm*L/EL 
Xa((V-VZl/RETA)**2 
G#(l , /E21*( l . -EL#(l .+ErA*E2)+EL#EL#ETA#E2) 
ETA.EL/(EL+G) 
G#*, 
IF (E2*X.6T.l**,)  GO TO 21 
6bEXP(-E2*X) 

21 CONTINUE 
EL"l . / ( l .+*) 
C#(.a029-.42*7#X1/(1.+.203*X+.07335#X#X) 
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U#(1.-ETA)#0+ETA*EL+ETA#(1..ETA)#E#(G.EL1 
UaU*PEAK 
RETURN 
END 
SUBROUTINE OPLSPA(NnEG,NPTS,%,V,N,Q,TUWYLO) 
DIMENSION 
OOUBLE PRECISION Q(11,PN(l1),PNl(10),SUh(4),B,C,PN%,TMP 

C POLYNOMIAL FITTING ROUTINE 
C NDEQmOEGREE OF THE POLYNOMIAL 
C *•  VECTOR OF INDEPENDENT VARIABLES 
C Y" VECTOR OF DEPENDENT VARIABLES 
C nbVECTOR OF WEIGHTS 
C OmVECTOR OF FITTED PARAMETERS CALC BY OPLSPA 
C TUWYLO MUST BE SET TO 0.  BY THE CALLING ROUTINE 
C FOR OTHER USE OF THIS SWITCH, SEE BILL HIGBY FOR DETAILS*. 

IF(TUWYLO) ?, l ,g 
1 NmB 

C*0, 
PN(l)«l ,0 
QO TO 6 

e C"-SUM(3)/SUM(4) 
s Ba-SUM(n/S(iM(;)  

SUM(4)"SUM(3) 
N#N+l 
PN|(N)#0. 
PN(N+1)#0. 
00 4 J"1,N 
TMPbPN(J) 
PN(J)#m*PN(J1+C*PNl(J) 

4 PNHJ)»TMP 
DO S J«1,N 

5 PN(J+l)»PNfJ+l)+PNl(J) 
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2. Program 11(B)t For peaks vrith nonnegllgible pressure broadening effect 

This program is similar to program 11(A), only the role of Doppler 

width and Lorentzian width is switched. It is used for absorption 

peak at pressures that pressure broadening is not negligible. 
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c THIS PROGRAM IS FOR PRESSURE-WROADPNEO PEAKS, 
C IT USES VOIRT PROFILE, WJTH FIXED OOPPLER WIDTH AND VARIED 
C LORENTZIAN WIDTH, TO FIND THE BEST FITTING FOR THE EXPERIMENTAL 
C PEAKS. IT ALSO CALCULATES AREA, CENTFR FREQUENCY, ABSORPTION, 
C AND LINE WIOTH, 

PROGRAM MAIN(INPUT,OUTPUT,TAPE5»INPUT,TAPE6b0UTPUT) 
INTEGER SAMPLEfS),0ATA(5),0ATe(5î 
DIMENSION AX(1580),AV(1S*0),Y(1590),IPKMTN(6),IPKMAX(6),W(15*0) 
DIMENSION TRANSY(3Pa),SFRROR(20,20,2m),CNTR(6),HALFW(6) 
DIMENSION ALFAC6),DLTA(è),DLTW(b),DLTF(6) 
00U8LEPRECTSI0N OfS) 

C IOTSTS»NO OF DATA SETS, 
C ITOT • TOTAL NO OF POINTS'. 
C lAMlN •  STARTING POINT FOP BASE. 
C IBMAX •  END POINT OF RASE. 
C NUhPKS •  NUMPER OF PEAKS. 
C LOW B STARTING POINT FOR POLYNOMIAL FIT. 
C IHIGH •  END POINT FOR THE FIT. 
C LOOPN 1,2 *  3 :  NUMBER OF 00 LOOPS OF PEAK, CENTER POSITION AND 
C HALFWTOTH IN BEST FIT DETERMINATION OF THE 
C ABSORPTION EQUATION, 
C IPKMIN(I) • STARTING POINT OF PEAK I, 
C IPKMAX(I) •  fNO POINT OF PEAK I .  
C CNTR(I) •  VISUAL GUESS FOR AGS CENTER OF PEAK I ,  
C HALFWCI) •  VISUAL GUESS FOR HALFWIOTH AT HALF MAX OF PEAK I(GAUSSIAN) 
C ALFACn •  LORENT/IAN WIDTH 
C DLTA(I)  •  INCREMENTS OF PEAK I  IN THE BEST FIT OF A88 EQUATION, 
C ( IN ABS THANSMITTANCE) 
C OLTW(I) « INCREMENTS OF HALFwIOTH AT HALF MAX IN THE BEST PIT OF 
C AHS EOUATIONdN PERCENT OF TRIAL WIDTH), 
C OLTP(I) •  INCREMENTS OF POSITION CHANGE OF PEAK I  CENTER, 
C ( IN ABS HORIZONTAL UNITS)'  

REAO(5,MniOTSTS 
DO 1951 IHAUCKbI,IDTSTS 
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c (X,V) POINTS PETWEEN ALI PEAKS 
00 S I"2,NUMPKS 

MAX#IPKMAX(II)  
MlNsIPKMIN(l) 
00 S JBMAXFHIN 
KNT2»KNT2+1 
AX(KNT2)BJ 

5 AY(KNT2)MY(J1 
3 CONTINUE 

C 
C (X|Y) POINTS FROM LAST PEAK TO END 

ft MAX*IPKMAX(NUMPKS) 
00 T IBIHIGHA,IHIGH 
KNT2"KNT2+| 
AX(KNT2)#I 

T AY(KNT2)«t(I)  
C 
C WEIGHTING FACTOR 

00 0 I"1,KNT? 
ê W(I)»l, 

C 
C POLYNOMIAL [OFF DETERMINATION 

CALLnPL@PA(*,KNT2,AX,AY,W,O,0,p) 
WRITE(6,SS5) (Ofn , I»l,5> 

C 
00 4 I»l ,NUMPKS 
DLTW(I),nLTw(%)*ALFA(l) / l00. 
MINPK«TPKHlN(n 
HAXPNalPKMAX(I) 
KNT3"0 

C 
C TRANSHITTANCE POINTS CALC FROM ENVELOPE AND BASE 
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on b h  I W a l .LnOPWS 
IF (SERR0R(IA,IF,IW)-CWECK)#|,6&,66 

«1 CHECK#SE*RO*(IA,tF,IW) 
IREFmlA 
JREF'IF 
KREF«IW 

hh CONTINUE 
WRITF(6,ae8)IREF,JREF.KREF 
Gl 'LOOPNl+l- IAEF 
PEAK«PEAK.G1*0LTA(I)  
PEAK«AL0CIP(1,/PEAH) 
R2«L00PN2+l-JReF 
F8TRTbF8TRT-R2*0LTF(I)  
63#LQ0PN3+1-K*EF 
WaTRT#WSTRT.G3*0LTW(I) 
WRITE(6,*23)PEAK,F9TRT,wSTRT 
WRITE(6,777) 

9 CONTINUE 

f ,5A4,5X, '0ATA # ' ,SA4,5%,'0ATE ' ,5A«) 

10# FORMAT('* ' ,*THE INPUT DATA ARE'/SI ja) 
101 FORMATf'9')  
tea FORHATC 'SAMPLE 
103 FORMAT('  ' ,a i l*)  
10# FORMAT!'  ' ,RF10,5) 
110 FORMATClSAa) 
111 FORMAT(ai lW) 
183 FORHATdX#'MIN PEAK " ' ,F10.5,2X, 'MIN FREO CENTR " ' ,F10.5,2X, 'MIN H 

IALFUIOTH «' ,Fl*,S) 
222 FORHAT(8F10,0) 
333 FQRMATdX,'PEAK NO',15,2%,'CENTER AREA #' ,Fl0,S,2X, 'CENTER FREO *  

1,F10.9,2X, 'CENTER HLF WOTM m',FlM,5,/ , lX, 'ALFA " ' ,Fl*,S,2X, 'PE 
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DIMENSION 
DOUBLE PRECISION 0(1),PN(i ;) ,PN1(i f) ,SUM(4),B,C,PNX,TMP 

C POLVNflMUL FITTING ROUTINE 
C NDEG-OEGREF OF THE POLYNOMIAL 
C *•  VECTOR OF INPEPENOFNT VARIABLES 
C V# VECTOR OF nEPENDENT VARIARl.ES 
C ««VECTOR OF WEIGHTS 
C q,VECTOR OF FITTED PARAMETERS CALC PV 0PL8PA 
C TUWYLO MUST BE SET TO 0,  BY THE CALLING ROUTINE 
C FOR OTHER USE OF THIS SWITCH, SEE BILL HIGBY FOR DETAILS. 

IF(TUWYLO) 2,1,2 
t  N«0 

c«e. 
PN(t)«l ,0 
00 TO 6 

i  C B . s u H ( 3 ) / s u M ( a )  
3 8"-SUM(; i /SUM(3) 

N"N+1 
PNl(N),*.  
PN(N*|)m*, 
on « J«1,N 
TMPaPNfJ) 
PN(J)#B#PN(J)+C«PN1(J) 

« PNl(J)»TMP 
00 5 Jal ,N 

? PN(J+l)*PN(J+l)+PN1(J) 
6 00 7 K«l,3 
7 SUM(K)"0.* 

no il Im|,NPTS 
PNXal.e 
JaN 

S IF(J) 
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C. Program III: Spectrum Plotting Program 

This program uses the best-fit parameter set obtained through 

programs 11(A) and 11(B) to generate the theoretical peak. 

For each run a graph is produced upon the incremental plotter 

(Figure 11). The graph includes the experimental points, a continuous 

line representing the fourth degree polynomial for the 100% transmission 

curve, and a continuous line representing the theoretical transmission 

of each peak obtained from the theoretical absorption values which were 

obtained from the best fitting analytical parameters. 

The subroutines GRAPH, GRAPHS, and OPLSPA are in the Fortran 

library at the I.S.U. Computation Center. GRAPH plots the points which 

are given it with a variety of possible marks along with scaling the 

axes and labeling the axes. GRAPHS adds additional (X,Y) points to the 

graph generated by the most recent GRAPH subroutine. OPLSPA fits a 

polynomial equation of specified degree to the (X,Y) point set trans­

ferred to it and passes back the coefficients of the polynomial. 
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/ /SI  EXEC FORTG,REGION.G0#96K,TIMELGn#5 
/ /FORT.SYSIN NO *  
C THIS PROGRAM IS USED TO PLOT THE SPECTRA, BOTH THEORETICAL AND EXPERIMENTAL 
C CURVES, AFTER THE CALCULATION HAS BEEM DONE WITH BERKELEY COC COMPUTER, 

INTEGER 8AMPLE(5),0ATA(5),NATEF9) 
DIMENSION AX(LWA*),AY(;P%M),Y(IM@0), IPKMIN(M), IPKMA%(S) 
DIMENSION TKANSY(3**1,CNTP(E),HALFW(S) 
DIMENSION ALFA(9),BPEAK(«) 
DIMENSION 0(S) 

C IOTSTS«NO OF DATA SETS. 
C ITOT •  TOTAL NO OF POINTS. 
C IBMIN •  STARTING POINT FOR BASE. 
C IBMAX •  END POINT OF BASE. 
C NUMPKS •  NUMBER OF PEAKS, 
C LOW •  STARTING POINT FOR POLYNOMIAL FIT.  
C IHIGH •  END POINT FOR THE FIT.  
C IPKMIN(I)  •  STARTING POINT OF PEAK I .  
C IPKM&XCI)  •  ENLI POINT OF PEAK 1 .  
C CNTRD) •  BEST FIT V*LMF OF ABS CENTER OF PEAK T,  
C HALFW(I)  •  BEST FIT VALUE OF HALFWIOTH AT HALF MAX OF PEAK I  (GAUSSIAN).  
C ALFA(I)  •  BEST FIT VALUE OF LORENTZIAN WIDTH, 
C BPEAKCI)  •  BEST FIT OF ABSORPANCE AT CENTER OF PEAK I ,  
C Q(L)  TO 0(5)  •  POLYNOMIAL COEFFICIENTS OF ENVELOPE. 

REA0(5,111)I0TSTS 
00 1951 IHAUCK*| ,10TSTS 
REA0(5,1!0)  (SAMPLE(K),K«1,5) , (DATA(K),K»1,5) , (OATE(K),K*| ,5)  
REAO(5,«O0) (0(n ,T«l ,5)  
REA0(5,111)ITOT,IBMIN,IRMAX,NUMPKS,LOW,LONB,IHIRHA,IHIGH 
WRITE(6,7771 
WRITE (6,  1(9?) (SAMPLE (K) ,K,1,5) , (DATA (K),K,1,5)  ,  (DATE (K )  ,  K» I  ,  5) 
WRITE(&,55S) (0( I ) , I "1,5)  
WRITE(6,1 CP)I  TOT,IBMIN,IBMAX,NUMPKS,LOW,LOWB,IHIGHA,IHIGH 
00 I  I#L,NUMPKS 
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REAn(5, l l l )TPXMIN(I) , IPKMA%(I) 
*EA0(5,2?2)CNTR(I),HALFk(I) ,ALFA(I) ,8PEAK(I) 
WRITE(6,l03)IPKMlN(n , IPKMAX(n 
WRITE(6,I**)CNTR(I),HAIFW(I),ALFA(;) ,@PEAK(I) 

1 WRITE(6,I01) 
READ(5,222)(V(f) , I«1,1T0T) 
00 77 I«1,IT0T 

77 AX(I)mI 
IF (IT0T,GT.4W*)IT0T#4oa 
CALLGRAPH(tTOT,A*,V,3,7,*O.m,l9,0,?M.*,oL0,*10.0,m.*, 'X; ' , 'Y; ' , " ; '  

c 
C base AVERAGING 

AKNTlaf).  
TOT1"0. 
00 2 IKIBHIN,IPMAX 
AKNT1"AKNT1+I, 

2 TDTI«T0T1+Y(1) 
BA8E«T0T1/A<NTÎ 

C 
DO 4 Iml .NUMPKS 
MINPK«lPKHIN(n 
HAXPKsIPKMAX(I) 
*NT3«0 

C 
C TRANSHITTANCE POINTS CALC FPOM ENVELOPE AND BASE 

PEAK*. 
DO 10 J#MINPK,MAXPK 
RILJ«J 
KNT3"KNT3+1 
TEMPV«Q(n 
00 11 Ka9,5 
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L«K-1 
i l  TEMPY0TEKPV+O(*)#*ILJ##l 

TRAN8Y(KNT3)«(V(J)-B*8F)/(TEHPV.(»ASE) 
IF (TRANSy(KMT3).GT.PEAK) 60 TO IP 
PEAK«TRANSV(KNT3) 

10 CONTINUE 
WRITE(6,666)1 
WRITE (6,44 4)(TPANSV(J),Jal,KNT3) 

C 
C CALCULATION OF LEAST 80UARF FOR THE PEST FIT SET OF PEAK, WALFWIOTH, AND FREO 
C CENTER 

W0«HALFW(I) 
PPaBPEAKdl 
WL"ALFA(1) 
FSTRTbCNTRCI) 
KNT6"0 
SERROR"*. 
00 16 jBMINPKfHAXPK 
RILJ"J 
KNT6"KNT6*I 
CALL VOIGT (WL,Wp,FSTRT,RILJ,U,PP) 

16 SERROR«9ERRORf(| . /10.##U-TRANSY(KNT6))#*e 
RKNT6«KNT6 
SERR0R*SERR0R/RKNT6 
WRITE(6,420) SERROR 

C 
C DETERMINATION OF THEORETICAL POINTS OF TRANS OF PEAK 
C JUST CALCULATED 

KNT7"* 
DO 83 JJ#MINPK,MA%PK 
RILJ*JJ 
KNT7"KNT7*1 
AX(KNT7)*1J 
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CALL V0I6T (WL,WD,FST*T,*ILJ,U,PP) 
TRANS2«1./1«*' .**U 

83 AV(KMT7)aTRANS?*(y(JJ)-BASE)/TRANSY(KNT7)^BASE 
CALLG*APH@(kNT7,AX,AV,3,*, ' ; ' )  

9 CONTINUE 
C 
C OFTERMINATTON OF POINTS IN ENVELOPE EON FROM STARTING POINT TO END 

KNT7** 
DO 84 I#LOW,IHIGH 
R1LI«I 
KNTf"KNT7+l 
AX(KNT7)aI 
AV(KNT7)«Q(1) 
00 8« J"2,5 
L*J*1 

64 AV(KNT7)*AY(KNT71+0(J)#WILI#*L 
CALLGRAPH9(KNT7,AX,AY,3,4, ' ; ' )  

C 
100 FORMAT('0' , 'THE INPUT DATA ARE'/ailP) 
101 FORMATCa*) 
102 FORMAT('  », 'SAMPLE •,5A4,5X, 'DATA U •,SA4,5X, '0ATE ' ,5Afl)  
103 FORMATC ' ,*110) 
104 FORHATC ' ,*F1*.S) 
110 F0RMAT(15A4) 
in FORMATfSIl*)  
222 FORHATf8Fl0.0) 
400 F0RHATt5(lPE14.6)) 
420 FORMAT('*f , 'THE LEAST SodARE IS ' .1PE14'.6) 
444 FORMATC '  ,  « (  1PE1 4.6 ,  2X) )  
555 FORMAT('0' , 'POLYNOMIAL COEFFS AWE',1*,5(1PE14,6,2*)) 
666 FORMATCIX, 'ADJUSTED TRANSHITTANCE FOP PEAK NO',15) 
777 FORHAT(' l ' )  

1951 CONTINUE 
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187 

X. APPENDIX Cj CALCULATIONS FOR FITTING A 

LINEAR REGRESSION PASSING THROUGH THE ORIGIN 
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The mathematical equations used in the calculation of the fitted 

line and its standard deviation for linear regression passing through 

the origin, i.e. Y = aX, are as follows [185]. 

The slope of the fitted line can be expressed as 

a = Z X^Y^/E 

and the standard deviation of the slope is 

Sa = CSy.^/SCX. -  X)2]^ 

2 2 
Sy.x = Y— ] ' (n-l) 
^  E X .  

where 

and 

n is the number of measurements, 

X^ is the X of the ith measurement, 

Y^ is the Y of the corresponding ith measurement, 

and X is the arithmetic mean of the n measurements. 
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